US 20230074580A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0074580 A1

Neugschwandtner et al. 43) Pub. Date: Mar. 9, 2023
(54) RUNTIME-TAILORED SECURITY POLICIES (52) US. CL
FOR APPLICATIONS CPC GO6F 21/54 (2013.01); GOGF 2221/033
(2013.01)
(71) Applicant: gr;cle Engi:'natiogaAl CUoSrporation, (57) ABSTRACT
eawoo ores. (Us) Techniques are described herein for function-level limiting
(72) TInventors: Matthias Neugschwandtner of privileges for a target application. Privileges dependen-
Perchtoldsdorf (AT); Hugo éuiroux cies for different funct.ions of an application are determinf:d
Zurich (CH); Paul l:]lvinger Zurich, based on static eyaluatlon of the.code bass:. A qall graph with
(CH) ’ ’ nodes representing the application functions is established,
and the nodes are associated with the determined privilege
dependencies. The graph is modified using iterative back-
ward dataflow analysis to associate the nodes in the graph
(21) Appl. No.: 17/465,694 with privileges that are reachable from each node. Transi-
tion-edges are identified within the graph, where a transi-
. tion-edge connects nodes having different sets of privileges.
(22) Filed: Sep. 2, 2021 Function calls implementing the identified transition-edges
are replaced, in instructions for the application (e.g., byte-
code or machine code), with calls to wrapper functions.
o . . Each wrapper function transfers control to a thread other
Publication Classification than the caller thread, to which a security policy for the
(51) Imt. CL replaced function is applied, and uses the other thread to
GO6F 21/54 (2006.01) execute the replaced function.

502 IDENTIFY A PLURALITY OF FUNCTION SETS, AMONG A PLURALITY OF
FUNCTIONS OF A PARTICULAR APPLICATION, THE ONE OR MORE FUNCTIONS
OF EACH FUNCTION SET BEING ASSCCIATED WITH A COMMON SET OF
PRIVILEGE DEFENDENCIES

504 IDENTIFY ONE OR MORE TRANSITION FUNCTION CALLS IN
INSTRUCTIONS FOR THE PARTICULAR APPLICATION, WHERE A TRANSITION
FUNCTION CALL INVOKES A TARGET FUNCTION OF A FIRST FUNCTION SET,
OF THE PLURALITY OF FUNCTION SETS, FROM WITHIN A CALLER FUNCTION

{F A SECOND FUNCTION SET GF THE PLURALITY OF FUNCTION SETS

506 MODIFY THE INSTRUCTIONS FOR THE PARTICULAR APPLICATION, TC
PRODUCE MODIFIED INSTRUCTIONS, BY REPLACING EACH TRANSITION
FUNCTION CALL, OF THE ONE OR MORE TRANSITION FUNCTION CALLS, WITH
A WRAPPER FUNCTION CALL THAT, WHEN EXECUTED, CAUSES ATARGET
FUNCTION OF SAID EACH TRANSITION FUNCTION CALL TO BE eXECUTED BY
A SEPARATE THREAD WITH ONE OR MGRE PRIVILEGES THAT SATISFY A SET
OF PRIVILEGE DEPENDENCIES ASSOCIATED WiTH A FUNCTION SET THAT
INCLUDES THE TARGET FUNCTION

508 STORE THE MODIFIED INSTRUCTIONS IN MEMORY OR ON DISK

Patent Application Publication = Mar. 9, 2023 Sheet 1 of 12 US 2023/0074580 A1

FIG. 1

US 2023/0074580 A1

Mar. 9,2023 Sheet 2 of 12

Patent Application Publication

¢

old

ssenba

uoneonddy AW

BB

%

d uonszieny |

aseqeiep

e ROIUAWILIGS

Patent Application Publication = Mar. 9, 2023 Sheet 3 of 12 US 2023/0074580 A1

COMPUTING DEVICE 300

ATTACK SURFACE
REDUCTION (ASR)
APPLICATION 302

MEMORY 304

TARGET
APPLICATION 306

FIG. 3

US 2023/0074580 A1

Mar. 9,2023 Sheet 4 of 12

Patent Application Publication

(3LEm (Javay
oLy 807
a NOILONNA 9 NOILONNA
Ocy 8Ly 9Ly
{(Nado
507 707 <
g NOILONNA ¥ NOILONNA
iy 2y
<oy /o@
NIV

0ly 307
(I NOLLONNA 9 NOILLONNA

ey 8Ly Ly

0¥ y0y
g NOILLONNA V NOILONNA
Py Uy
<oy /8«
NIV

US 2023/0074580 A1

Mar. 9,2023 Sheet 5 of 12

Patent Application Publication

(3LEm
(Javay (av3d (3.LM (avay
oly S0v 0l 80¥
@ NOILONNA 2 NOILONNA a NOLLONNA O NOILONNS
v\ Neiy oLy 0z \ \gyp biv
(3Lam (3LIEM
(N340 (avay ON3dO {avay
507 FO < 507 v
g NOILONNS ¥ NOLLONNA g NOILLONNA ¥ NOILONNA
bl 2Ly AR A%
(3Ldm ,
(N3do (IN3do
207 20y
NIV NIVIN

Patent Application Publication = Mar. 9, 2023 Sheet 6 of 12 US 2023/0074580 A1

502 IDENTIFY A PLURALITY OF FUNCTION SETS, AMONG A PLURALITY OF
FUNCTIONS OF A PARTICULAR APPLICATION, THE ONE OR MORE FUNCTIONS
OF EACH FUNCTION SET BEING ASSOCIATED WITH A COMMON SET OF
PRIVILEGE DEPENDENCIES

504 IDENTIFY ONE OR MORE TRANSITION FUNCTION CALLS IN
INSTRUCTIONS FOR THE PARTICULAR APPLICATION, WHERE A TRANSITION
FUNCTION CALL INVOKES A TARGET FUNCTION OF A FIRST FUNCTION SET,
OF THE PLURALITY OF FUNCTION SETS, FROM WITHIN A CALLER FUNCTION

OF A SECOND FUNCTION SET OF THE PLURALITY OF FUNCTION SETS

506 MODIFY THE INSTRUCTIONS FOR THE PARTICULAR APPLICATION, TO
PRODUCE MODIFIED INSTRUCTIONS, BY REPLACING EACH TRANSITION
FUNCTION CALL, OF THE ONE OR MORE TRANSITION FUNCTION CALLS, WITH
A WRAPPER FUNCTION CALL THAT, WHEN EXECUTED, CAUSES A TARGET
FUNCTION OF SAID EACH TRANSITION FUNCTION CALL TO BE EXECUTED BY
A SEPARATE THREAD WITH ONE OR MORE PRIVILEGES THAT SATISFY A SET
OF PRIVILEGE DEPENDENCIES ASSOCIATED WITH A FUNCTION SET THAT
INCLUDES THE TARGET FUNCTION

508 STORE THE MODIFIED INSTRUCTIONS IN MEMORY OR ON DISK

FIG. 5

US 2023/0074580 A1

Mar. 9,2023 Sheet 7 of 12

Patent Application Publication

9 "9l
(3Lram
(Javad (Javay
0iv 307
a NOILONNA O NOILONNA
£
02y \ Ny oL
(3Lram
(INado (Jav3y
a0y 707
g NOILONNA ¥ NOILONNA
» 4
,. /
v i
AN S
(3LIEMm /8@
{avay
ON3dO
207
NIV

US 2023/0074580 A1

Mar. 9,2023 Sheet 8 of 12

Patent Application Publication

o7F 306
ad NOILONNA O3 NOILONNA
501
O H3ddYdM
505 7%
g NOILONNA ¥V NOILONNA
~..\.. ..\v\. ;V¢|||O|M lNiiiOiiN '.¢’ |
g ddddvdm Y H3ddVeM
AN S

20y
NIVYIA

/ol

004

Patent Application Publication = Mar. 9, 2023 Sheet 9 of 12 US 2023/0074580 A1

ThreadMain
{ 800

A e e e e A

. calt function A

.~

o o o e e e e

FIG. 8A

Patent Application Publication = Mar. 9, 2023 Sheet 10 of 12 US 2023/0074580 A1

:ThreadMain } ‘ThreadFunctionA
{ 800 810)
1‘\\) call wrapper A f
" 802 |
spawn new thread & !
call wrapper A-delegate 804 »3
B load policy
T 812
il D
§ ' all furiction A
§ J 814
5 wwh*”x‘retum
E & 818
s -
5 return 818
‘i return E
~~~~~~ < 806 |

, FIG. 8B



US 2023/0074580 A1

Mar. 9, 2023 Sheet 11 of 12

Patent Application Publication

916
301A30 TOULNOD

vee 6 Old
1SOH
0z6 1§ ................................... e
. i TR 06
cet \ m e JOV4HAUINI
MHOMLIN AN
" H0SSI004d
RIOMLIN | NOILYOINNININOD
m W3LSASENS O/
LINYIINI _ _ _ _
016 806 906
0%6 oY AHOWIN
N JOVHO0LS
|

16
301A30 LNdNI

zl6
301A3Q 1Nd1NO




US 2023/0074580 A1

Mar. 9,2023 Sheet 12 of 12

Patent Application Publication

0¢04

0L "Old

(006 32IA3A ONILNINOD “00) TUYMANYH Fuve

(In9) 30V443LNI
H3ISN TVYIIHAVYED

(IMIT YO ‘GIOUANY ‘SOI ‘SO VI ‘XNNIT ‘XINA ‘SMOANIM “69)

C N

< N WY¥O0¥d
2001 NOILYOIddY

-
N¢0O} -/

W31SAS ONILVH3dO
[] € NVH90dd ¢ NVH90dd I NVH90¥d
NOLLYIINddVY NOLLYOINddVY NOLLVIINddV
2001 - gc00! -/ V2001 ~/
0001




US 2023/0074580 Al

RUNTIME-TAILORED SECURITY POLICIES
FOR APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to U.S. patent applica-
tion Ser. No. 16/809,928, titled “Tailored Security Configu-
ration of Least-Privilege Applications” (referred to herein as
the “Tailored Security Configuration Application”), filed
Mar. 5, 2020, the entire contents of which is hereby incor-
porated by reference as if fully set forth herein.

FIELD OF THE INVENTION

[0002] Techniques described herein relate to software
applications and, more particularly, to applying tailored
security policies to software applications.

BACKGROUND

[0003] A software application operates on a computing
system with a certain set of privileges, which define what
actions the operating system of the computing system allows
the application to perform (such as have access to a network,
open files in a file system, write to files to the file system,
etc.). The least privilege principle in the context of software
applications states that a software application should operate
using the least set of privileges necessary to complete a
computing job in order to increase security of the computing
system.

[0004] Security policies are mechanisms for an operating
system to restrict the functions or operations a software
application can perform, i.e., by limiting the application to
those privileges indicated in an associated security policy.
For example, the Linux operating system provides a func-
tion seccomp, which is used to restrict the system calls
allowed to be performed by a given application. The threat
model of seccomp is as follows: To actually have an effect
on the system, an attacker needs to invoke privileges of the
attacker’s choice. If an attacker manages to compromise an
application, the next step is to try to trick the application into
allowing privileges of the attacker’s choice. A seccomp
policy can restrict the set of privileges that are available to
a thread, effectively limiting the attack surface exposed in an
application running in the thread.

[0005] A typical security policy is an over-approximation,
specified at an application-level granularity to capture all
privileges that an associated application might need at any
stage of execution, such as the single security policy applied
to the whole of a target application depicted in FIG. 1.
Generally, the application has access to all privileges iden-
tified in an associated security policy throughout execution
of the application, whether the privileges are in use or not,
exposing a constant attack surface during application execu-
tion.

[0006] However, not all code in an application will need
access to all privileges indicated in a security policy speci-
fied at an application level. An applied security policy can be
manually adjusted during application execution to be more
restrictive. However, this is rarely done in practice, given
that it is non-trivial to identify the privilege dependencies at
various points in application execution. Furthermore, secu-
rity mechanisms generally only allow tightening of security
policies to grant fewer privileges. Adding privileges to an
applied security policy (i.e., “widening” the policy) is gen-

Mar. 9, 2023

erally not allowed, which prevents an attacker from adding
privileges of the attacker’s choice after an application has
been compromised.

[0007] Furthermore, manually specifying security con-
figurations for an application is error prone and tedious, and
often requires expert knowledge of the application. For
example, even if an application developer understands the
code paths of an application, in many instances the appli-
cation developer still does not know what privileges should
be restricted due to dependencies created when linking
third-party libraries or software packages, whose internal
mechanisms are generally unknown to the application devel-
oper.

[0008] As such, to effectively reduce the attack surface
presented by a target application at runtime, it would be
beneficial to automatically identify the different privileges
that may be used by various portions of a target application,
and to grant only those privileges that may be used by the
target application portions.

[0009] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section. Further, it should not be assumed that any of the
approaches described in this section are well-understood,
routine, or conventional merely by virtue of their inclusion
in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010]
[0011] FIG. 1 depicts a single security policy applied to
the whole of a target application.

[0012] FIG. 2 depicts a granular application of security
policies to different portions of a target application.

[0013] FIG. 3 is a block diagram that depicts an example
computing device running an example attack surface reduc-
tion application.

In the drawings:

[0014] FIGS. 4A-4B depict example call graphs of target
application.
[0015] FIG. 5 depicts a flowchart for using privilege

dependency information for functions of a target application
to identify privilege-based function sets, and modifying
instructions for the target application to execute the func-
tions of the target application using function set-specific
security policies.

[0016] FIG. 6 depicts a fixed-point annotated call graph
with highlighted transition edges.

[0017] FIG. 7 depicts a call graph that includes wrapper
functions that are inserted at transition edges.

[0018] FIGS. 8A-8B depict example functionality of a
target application before and after replacement of a transi-
tion function call with wrapper logic that spawns a new
thread to execute the callee function.

[0019] FIG. 9 is a block diagram that illustrates a com-
puter system upon which some embodiments may be imple-
mented.

[0020] FIG. 10 is a block diagram of a basic software
system that may be employed for controlling the operation
of a computer system.



US 2023/0074580 Al

DETAILED DESCRIPTION

[0021] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of techniques described
herein. It will be apparent, however, that techniques
described herein may be practiced without these specific
details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid
unnecessarily obscuring described techniques.

1. General Overview

[0022] Techniques are described herein for limiting privi-
leges for a target application such that the applied security
policies are tailored to the privilege dependencies of the
different functions of the target application, as depicted in
FIG. 2. Specifically, the functions of the target application
are grouped into different privilege-based function sets. The
functions of each function set are executed in a thread with
a function set-specific security policy applied thereto, rather
than the whole application being executed by a single
process with a single security policy.

[0023] Individual privileges dependencies of different
functions of the application are determined based on static
evaluation of the application code base. A call graph repre-
senting the various functions of the application is estab-
lished, and the functions of the application are associated
with the determined privilege dependencies.

[0024] An additional challenge addressed herein is the
base rule that security policies must never “widen” such that
privileges can be “dropped” from a security policy, but not
regained. To account for this base rule, the call graph is
modified using iterative backward datatlow analysis to asso-
ciate the function nodes in the call graph with any privileges
that are reachable from each node such that the privilege
dependencies never “widen” as the call graph progresses
from the root node.

[0025] Transition edges are identified within the call
graph, where a transition edge connects function nodes with
different sets of privileges. The function sets for the target
application are determined based on the identified transition
edges such that each function set includes functions that are
associated with the same privilege annotations.

[0026] To implement the function set-specific security
policies, which tailor allowed privileges based on annota-
tions of the nodes belonging to the function sets, functions
that are associated with different function sets are run using
distinct threads. Accordingly, function calls implementing
the identified transition edges are replaced, in instructions
for the application (such as bytecode or machine code), with
calls to wrapper functions. Each wrapper function transfers
control to a different thread, to which a security policy for
the replaced function is applied, and then uses the different
thread to execute the replaced function. In this way, the
called function is granted only the privileges associated with
the function. After the called function terminates, control
passes back to the originating thread, thereby restoring the
broader security access associated with the calling function
without allowing arbitrary widening of security policies.

[0027] It is noted that function calls between functions
belonging to the same function set do not require transfer-
ring control to a different thread for callee function execu-
tion. As such, the cost of transferring control to a different

Mar. 9, 2023

thread is avoided for function calls among functions in the
same function set, i.e., with the same security policy.
[0028] Limiting privileges at a function set level tailors
security policies to the actual dependencies of the code that
is currently executing with the goal of minimizing the
exposed attack surface. By editing bytecode or machine
code of the target application to include the wrapper func-
tions, techniques described herein may be automatically
implemented at run-time or compile-time without requiring
developers to manually identify security dependencies, or to
manually invoke the security mechanisms at all. As such, a
reduced attack surface may be automatically enforced for
any application running at a computing system, thereby
increasing overall security of the system. Using techniques
described herein, the effectiveness of attack surface reduc-
tion via function set-level security policy enforcement is
drastically increased. For example, experimentation measur-
ing the number of system calls granted to different functions
in example programs shows up to 60% kernel attack surface
reduction using function set-specific security policies com-
pared to application-level policy enforcement.

[0029] To illustrate the reduced attack surface, a web
application depicted in FIGS. 1 and 2 receives HTTP
requests on port 80, processes the requests, and returns
HTTP responses. To listen to new connections on port 80,
the application invokes the system call bind( ) only once
during the initialization phase to open a port for listening.
Once the application listens on the port, it accepts connec-
tions (“handling client requests”) and processes requests
(“communicate with database™). In this example, attackers
are able to find a flow in the request processing logic and are
able to execute system calls of their choice. With a single
security policy (as depicted in FIG. 1), attackers are able to
bind to a new port (e.g., 8000) and therefore open a
persistent communication channel to maintain a backdoor.
Restricting the privileges at a function level (as depicted in
FIG. 2) would have prevented attackers to open a port after
the application has completed the initialization phase. Spe-
cifically, the application only needs to access the bind( )
system call during the initialization phase of the application,
and can drop the privilege after the initial setup, denying the
system call while handling client requests or communicating
with the database, etc.

[0030] As a second example, an image parsing pipeline is
composed of 3 stages: 1) read an image from a file, 2) extract
metadata associated with the image, and 3) upload the
metadata to a database. To read an image, the application
calls the open( ) system call. To upload metadata to the
database, the application connects to the database using the
connect( ) system call. Attackers succeed in crafting a
malicious image that triggers a security vulnerability in
stage 2. With a single security policy, attackers are able to
open any file accessible to the application (via the open( )
system call) and upload the file content to a remote server
(via the connect( ) system call). Restricting the privileges at
a function level would have prevented attackers from both
opening files and connecting to a remote server, as these
system calls are not necessary to perform stage 2 of the
pipeline.

2. Example Computing System

[0031] FIG. 3 is a block diagram that depicts an example
computing device 300 running an example attack surface
reduction (ASR) application 302, which is described as



US 2023/0074580 Al

implementing attack surface reduction techniques described
herein. However, techniques described herein may be imple-
mented in any way, including in hardware, software, or any
combination of hardware and software.

[0032] Example computing device 300 further comprises
memory 304 (e.g., DRAM), which stores instructions for a
target application 306 (such as bytecode or machine code).
As described in further detail below, ASR application 302
analyzes the instructions of target application 306 to identify
function set-specific security policies to apply to target
application 306 at run-time to reduce the attack surface
presented by the target application. The threat model used
herein assumes that an attacker can compromise code run-
ning on a thread that accepts attacker-controlled input, but
cannot get access to arbitrary threads, which is a valid
assumption for managed runtimes.

3. Function-Specific Privilege Dependency
Discovery

[0033] An application, such as target application 306, is
composed of several binary artifacts including the applica-
tion binary and its libraries, each having its own set of
privilege dependencies. ASR application 302 performs static
call graph analysis on software artifacts in all reachable code
of target application 306 to generate a call graph for the
functions of the application, as described in the Tailored
Security Configuration Application incorporated by refer-
ence above. The output of this static analysis is a call graph
where each node represents a function of the target appli-
cation, and each edge represents caller and callee relation-
ships between the functions. Furthermore, each function
node is annotated with any privilege dependencies for the
represented function. A privilege dependency of a function
is a privilege, such as a system call, that could possibly be
used by the function.

[0034] To illustrate, ASR application 302 determines that
target application 306 comprises five functions: main, and
functions A-D. ASR application 302 further determines that
main calls both function A and function B, that function A
calls both function C and function D, and that function D
also calls function A (i.e., double-recursion between func-
tion A and function D).

[0035] FIG. 4A depicts an example call graph 400 of target
application 306 comprising nodes 402-410 representing the
discovered functions of the target application, as well as
edges 412-420 representing the discovered function calls
among the functions. Edges 412-420 are directional such
that the origin node of an edge represents the caller function
and the destination node of the edge represents the callee
function. To illustrate, edge 412 represents the existence of
one or more function calls in main, represented by node 402,
to function A represented by node 404.

[0036] During static analysis of target application 306,
ASR application 302 performs privilege discovery indepen-
dently on each artifact (application instructions and librar-
ies) to generate a map that, for each function of target
application 306, holds the set of privileges (such as system
calls) that may be used by the function at runtime.

[0037] As in call graph 430 of FIG. 4A, ASR application
302 annotates the nodes of the call graph with the sets of
privileges needed by the represented functions (i.e., the
privilege dependencies of the nodes). For example, ASR
application 302 determines that function B of target appli-
cation 306 may use the open( ) system call, function C of

Mar. 9, 2023

target application 306 may use the read( ) system call, and
function D of target application 306 may use the write
(system call. Thus, in call graph 430, the nodes of call graph
400 are annotated with the system calls identified for the
respective functions. It is noted that embodiments are not
restricted to system call-type privileges.

4. Iterative Backward Dataflow Call Graph
Analysis

[0038] Once ASR application 302 has generated an anno-
tated call graph, such as graph 430, ASR application 302
uses an iterative backwards dataflow analysis to identify a
set of privileges that are accessible by each node in the call
graph, i.e., which are associated with the node or with any
node reachable by the node in the call graph. Specifically,
via the iterative backwards dataflow analysis, each node is
annotated with the full set of privileges accessible by the
node once the analysis reaches a fixed point, in that further
iterations will not change the sets of privileges associated
with any nodes in the graph. The iterative backwards data-
flow analysis is guaranteed to terminate (upon determining
that a fixed point for a target graph has been found) since the
number of privileges that can be granted to a function is
finite and the function set-specific security policies grow
monotonically during the analysis. Annotating each node
with the privileges reachable from the node allows imple-
mentation of function set-specific security policies, based on
the annotated call graph, to satisfy the criteria that security
policies must never “widen”.

[0039] Formally, the iterative backward dataflow analysis
is defined as follows:

[0040] Let Dm be the domain of dataflow values. Dm is
the powerset over all privilege dependencies in the
target application.

[0041] Let in [n] be the input of node n in the call graph
in each iteration.

[0042] Let out [n] be the output of node n in the call
graph after each iteration.

[0043] Let F be the flow function, such that out [n]=F
().
[0044] For the iterative backward dataflow analysis, in [n]

is defined in terms of its successor nodes’ (i.e., its callees’)
out [ |. More precisely:

[0045] in'[n]=union (out™ [n']), where n' is a successor
of n, i.e., n is the caller node and n' is a callee node
called by n, and where i is the iteration count;

[0046] out’ [n]=F (n), where F [n]=union (out™'[n], in’
[n]), i.e., F takes the union of the old out™ [n], which
represents the current annotations of the current node,
and the new in’ [n]; and

[0047] out’ [n]=union (out‘[n], union (out~'[n'])),
where n' is a callee of n.

[0048] Initially, out'[n] is the set of privileges used by
node n.

[0049] The algorithm for the iterative dataflow analysis is
given below:

i=2
repeat until no change for all n
in’ [n] = union (out™! [n'] ) for all callees n' of n
out’ [n] = union (out™™! [n] , in! [n] )
i=i+1
end
end




US 2023/0074580 Al

[0050] To illustrate, a first pass of iterative dataflow analy-
sis is applied to annotated call graph 430. The values of in
[n] and out [n] are as follows:

[0051] n=function C: in® [C]=* ; out'[C]="read( )”

[0052] n=function D: in* [D]=* >; out'[D]="write( )"

[0053] n—function A: in® [A]=“read( ), write( ); out'
[Al=

[0054] n=function B: in® [B]=* ; out* [B]="open( )"

[0055] n=main: in® [main]=“open( )”; out'[main]=* "

The results of this first pass of iterative dataflow analysis are
depicted in annotated call graph 440. Specifically, after the
first pass, the annotations of nodes 406, 408, and 410 have
not changed, node 404 is now annotated with the privileges
from child nodes 408 and 410, and node 402 is now
annotated with the privilege from child node 406.
[0056] A second pass of iterative dataflow analysis is
applied to annotated call graph 440 of FIG. 4B. The values
of in [n] and out [n] are as follows:
[0057] n=function C: in® [C]=* "; out® [C]="read( )"
[0058] n=function D: in® [D]=“read( ), write( )”; out”
[D]="“write( )”
[0059] n=function A: in® [A]="read( ), write( )”; out®
[A]="“read( ), write( )”
[0060] n—function B: in® [B]=*"; out® [B]=“open( )”
[0061] n=main: in® [main]="read( ), write ( ), open( )”;
out® [main]=“open( )”
The results of this second pass of iterative dataflow analysis
are depicted in annotated call graph 450 of FIG. 4B. Spe-
cifically, after the second pass, the annotations of nodes 404,
406, and 408 have not changed, the annotations of node 402
have been augmented with the in [main] of the second pass,
and the annotations of node 410 have been augmented with
the in [D] of the second pass. It is noted that out [main] does
not affect the annotations of any nodes since it is not a
successor node to any other node.
[0062] As illustrated in FIG. 4B, eventually, a fixed-point
is reached. F increases monotonically, and out [n] is bounded
by Dm, which is the set of all possible dependencies in the
graph. Once the fixed-point is reached, e.g., illustrated by
call graph 450, each caller node always has a superset of
privilege dependencies of all its callee nodes. ASR applica-
tion 302 annotates each node in the call graph with the set
of dependencies that are necessary to execute the function
represented by the node or by any nodes that belong to the
subgraph reachable from the node.
[0063] As indicated above, FIG. 4B depicts iterations of
iterative backward dataflow analysis starting from annotated
call graph 430. In call graph 440 of FIG. 4B, privilege
dependencies from immediate child nodes (one step away)
have been added to the annotations of the parent nodes. In
call graph 450, privilege dependencies from child nodes that
are two steps away have been added to the annotations of the
parent nodes. In this case, call graph 450 represents the
fixed-point for target application 306 in that the set of
privileges associated with each node ensures that security
policies will never “widen” across function calls. Specifi-
cally, as depicted by annotated call graph 450, the main
function security policy must encompass open( ), read( ),
and write( ) dependencies, as these system calls can be
reached from main. However, for execution of function B,
only the open( ) dependency is needed, and the security
policy originating from main can be narrowed to only allow
open( ) when executing function B.

Mar. 9, 2023

5. Discovering Policy Transition Edges

[0064] Techniques described herein group an annotated
call graph into function sets associated with distinct sets of
privilege dependencies. As described in further detail below,
the functions of each function set will be executed in a
separate thread associated with an individual tailored secu-
rity policy specific to the function set.

[0065] FIG. 5 depicts a flowchart 500 for using privilege
dependency information for functions of a target application
to identify privilege-based function sets, and modifying
instructions for the target application to execute the func-
tions of the target application using function set-specific
security policies. At step 502 of flowchart 500, a plurality of
function sets is identified among a plurality of functions of
a particular application, the one or more functions of each
function set being associated with a common set of privilege
dependencies. For example, ASR application 302 identifies
transition edges between nodes of fixed-point annotated call
graph 450, where a transition edge connects nodes with
different sets of privilege dependencies.

[0066] While a transition is possible at every edge of the
graph between two nodes, it is not necessary if the set of
privilege dependencies for the nodes is the same. Starting
from the root of graph 450 (e.g., main), ASR application 302
visits each edge of the graph once. If the edge links two
nodes annotated with different sets of privilege dependen-
cies, the edge is marked as a transition edge. FIG. 6 depicts
fixed-point annotated call graph 600, with the same nodes,
edges, and annotations as graph 450, with transition edges
412, 414, and 416 highlighted.

6. Fourth Step: Transitioning Between Policies

[0067] Based on the identified transition edges, ASR
application 302 adjusts instructions for target application
306 to implement function set-specific security policies for
the various functions of the target application. For many
operating system security mechanisms, security policies are
implemented by applying the policies to threads running an
application. Thus, techniques described herein implement
changes in granting privileges based on the privilege depen-
dencies of the various function sets using distinct threads
with applied security policies needed for the various por-
tions of the application being run using the threads. To
illustrate in connection with two functions A and B, with A
calling B:

[0068] Function A is associated with a larger set of
privileges than function B. Upon invocation of function
B, a tighter security policy is enabled, allowing only the
privileges of function B. However, when returning
from function B, function A’s privilege set needs to be
reestablished. This issue is addressed herein by del-
egating the execution of function B to a distinct thread
from a thread executing function A. As policies are
thread-local, the policy may be tightened on the del-
egate thread, leaving the policy for the caller thread
untouched. When function B returns, the delegate
thread may be shut down, and execution is resumed on
the caller thread.

[0069] Function A is associated with a more limited set
of privileges than function B. The transition from
function A to function B would violate the “must not
widen” principle. This issue is addressed herein by
considering that all of function B’s privilege depen-



US 2023/0074580 Al

dencies are associated with function A during the
iterative backward dataflow analysis process described
above. The broadening of the privilege set for function
A does not worsen security: if an attacker manages to
compromise function A, they will be able to invoke
function B and thus get access to all of function B’s
privileges. Thus, the thread executing function A is
associated with a security policy that grants all of the
privileges required by function B, and as such, function
B is run on the same thread as function A.

[0070] It is not feasible to implement the function set-
specific security policies with a single thread since, while
dropping a privilege from a security policy is generally
allowed, most systems do not allow any arbitrary adding of
privileges to a thread’s security policy. Further, in general,
once a privilege is dropped from a given thread, the privilege
can never be granted to that same thread again. Thus, it
would be feasible to tighten the security policy when main
calls function A, however the system would not allow
re-introducing the open( ) system call privilege to the
security policy when control returns to main.

[0071] Thus, ASR application 302 delegates the execution
of functions with different sets of privilege dependencies to
different execution threads. For example, in the case of the
function call to function A in main, a first thread executes
main with a security policy that includes open( ), read( ), and
write( ). The first thread delegates execution of function A to
a second thread associated with a security policy that
includes only read( ) and write( ) associated with function A,
e.g., by creating the second thread and applying the narrower
security policy to the created thread. Such thread creation is
allowed since the second thread requires a subset of the
security privileges granted to the first thread. Once function
A execution is complete, control is returned to the first
thread executing main, which is still associated with the
broader security policy including open( ), read( ), and write(
). Thus, no arbitrary widening of security policies is required
to maintain the needed privileges for the calling function.
[0072] Returning to the discussion of flowchart 500, at
step 504, one or more transition function calls are identified
in instructions for the particular application, where a tran-
sition function call invokes a target function of a first
function set, of the plurality of function sets, from within a
caller function of a second function set of the plurality of
function sets. For example, ASR application 302 identifies
function calls, in instructions for target application 306,
corresponding to transition edges 412, 414, and 416. To
illustrate in the context of call graph 600, ASR application
302 identifies the following as transition function calls: calls
in main to either of function A or function B, and calls in
function A to function C.

[0073] At step 506 of flowchart 500, the instructions for
the particular application are modified, to produce modified
instructions, by replacing each transition function call, of the
one or more transition function calls, with a wrapper func-
tion call that, when executed, causes a target function of said
each transition function call to be executed by a separate
thread with one or more privileges that satisfy a set of
privilege dependencies associated with a function set that
includes the target function. To illustrate, computing device
300 stores bytecode for target application 306 in memory
304, and ASR application 302 leverages binary rewriting
techniques (e.g., Java bytecode rewriting, ksplice for live
patching, etc.) to inject wrapper logic at each identified

Mar. 9, 2023

transition function call. FIG. 7 depicts a call graph 700 that
includes wrapper functions 702-706 that are inserted at the
transition edges 412-416, respectively.

[0074] The wrapper logic at each identified transition
function call, in the target application instructions, imple-
ments transfer of control between threads and synchroniza-
tion logic to synchronize functioning between the threads.
FIG. 8A depicts functionality of target application 306 that
comprises a function call from main to function A. In FIG.
8A, both main and function A are executed by a single thread
800, as would generally be indicated in instructions for
target application 306 prior to instruction modification by
ASR application 302 described above.

[0075] In contrast, FIG. 8B depicts the functionality of
target application 306 after replacement of the transition
function call from main to function A with wrapper logic that
spawns a new thread 810. Specifically, thread 800 calls a
wrapper A function (step 802), which spawns the new thread
810 and transfers control to the new thread by calling a
wrapper A-delegate function to run on the new thread(step
804). The wrapper A-delegate function loads a security
policy, for thread 810, that includes only the read( ) and
write( ) privileges associated with function A as depicted in
call graph 600 (step 812). The wrapper A-delegate function
then calls function A (step 814), which, when complete,
returns back to the caller (wrapper A-delegate) function
(step 816). The wrapper A-delegate function returns back to
its caller (wrapper A) function (step 818). The wrapper A
function then returns to the caller (main) function (step 806).

[0076] Returning to the discussion of flowchart 500, at
step 508, the modified instructions are stored in memory or
on disk. For example, ASR application 302 stores modified
bytecode for target application 306 in memory 304 at
computing device 300. The modified instructions may then
be executed by computing device 300 such that target
application 306 is automatically executed with a reduced
attack surface using function set-specific security policies.
As another example, ASR application 302 makes changes to
an executable file for target application 306, e.g., by loading
one or more portions of the executable file into memory and
adjusting the instructions represented in the portions of the
executable file, as described in detail above.

[0077] As a further example, ASR application 302
receives a request to modify the instructions of target
application 306. ASR application 302 returns the modified
instructions (e.g., bytecode or machine code) to a source of
the request as a response to the request.

7. Thread Optimizations

[0078] Techniques described above create threads to
execute functions with different privilege dependencies.
However, creating an execution thread has a cost. For
example, using a micro-benchmark that evaluates the time
of a single function call on a Linux system and using
seccomp to apply security policies to the threads, it was
determined that the time required to execute the function
call:

[0079] on the same thread as the caller function (with-
out seccomp) was about 0.1 ns,

[0080] on a different thread that was dynamically cre-
ated for the function call and shut down upon function
return (without seccomp) was about 1.1 ns,



US 2023/0074580 Al

[0081] on a different thread that was dynamically cre-
ated for the function call and shut down upon function
return (with seccomp) was about 1.4 ns, and

[0082] on a different thread with that was pre-initialized
with an appropriate security policy applied (i.e., with
seccomp) was 0.3 ns.

Thus, the overhead is largely caused by creating the thread
on-demand. On top of thread creation, setting seccomp
policies adds about 30% of overhead. However, when using
a pre-initialized thread, the overhead significantly decreases.
[0083] There are several ways to improve performance of
techniques for reducing application attack surface by doing
better thread lifecycle management. For example, an execu-
tion thread can be reused if it already has the correct policy,
or if the function to be executed would require a policy that
is narrower than the one currently applied to the thread. For
example, at run-time of target application 306, for every
function set identified for the application, ASR application
302 pre-initializes a respective thread with the privileges
identified for the function set. When execution of one of the
functions in a particular function set is required, the function
is executed using the thread with the corresponding set of
privileges.

[0084] As another example, if it is not desirable to create
the total number of threads that would be required to
pre-initialize a thread for every function set, a capped
number of threads are pre-initialized. When there is a need
to run a particular function associated with a set of privilege
dependencies for which a thread has not been pre-initialized,
then the wrapper function may cause the system to initialize
a thread on-the-fly. Alternatively, the wrapper function may
cause the system to tighten the security policy of a pre-
initialized thread that is associated with a super-set of the set
of privileges associated with the particular function and use
this thread to run the particular function.

[0085] Additionally, function nodes in the call graph that
are annotated with similar (yet different) sets of privilege
dependencies can be clustered together in a composite
function set. A single set of privilege dependencies is
associated with the nodes of the composite function set,
which is the union of sets of privilege dependencies of
function nodes, in the composite function set, from the
fixed-point annotated call graph. Upon executing the func-
tions in the composite function set, a single transition is
needed (when entering the composite function set), at the
expense of over-approximating the policy applied to some
functions in the composite function set.

8. Hardware Overview

[0086] An application, such as ASR application 302 runs
on a computing device and comprises a combination of
software and allocation of resources from the computing
device. Specifically, an application is a combination of
integrated software components and an allocation of com-
putational resources, such as memory, and/or processes on
the computing device for executing the integrated software
components on a processor, the combination of the software
and computational resources being dedicated to performing
the stated functions of the application.

[0087] One or more of the functions attributed to any
process described herein, may be performed any other
logical entity that may or may not be depicted in FIG. 3,
according to one or more embodiments. In some embodi-
ments, each of the techniques and/or functionality described

Mar. 9, 2023

herein is performed automatically and may be implemented
using one or more computer programs, other software ele-
ments, and/or digital logic in any of a general-purpose
computer or a special-purpose computer, while performing
data retrieval, transformation, and storage operations that
involve interacting with and transforming the physical state
of memory of the computer.

[0088] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or
may include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

[0089] For example, FIG. 9 is a block diagram that illus-
trates a computer system 900 upon which an embodiment of
the invention may be implemented. Computer system 900
includes a bus 902 or other communication mechanism for
communicating information, and a hardware processor 904
coupled with bus 902 for processing information. Hardware
processor 904 may be, for example, a general-purpose
MiCroprocessor.

[0090] Computer system 900 also includes a main
memory 906, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 902 for storing
information and instructions to be executed by processor
904. Main memory 906 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
904. Such instructions, when stored in non-transitory storage
media accessible to processor 904, render computer system
900 into a special-purpose machine that is customized to
perform the operations specified in the instructions.

[0091] Computer system 900 further includes a read only
memory (ROM) 908 or other static storage device coupled
to bus 902 for storing static information and instructions for
processor 904. A storage device 910, such as a magnetic
disk, optical disk, or solid-state drive is provided and
coupled to bus 902 for storing information and instructions.

[0092] Computer system 900 may be coupled via bus 902
to a display 912, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
914, including alphanumeric and other keys, is coupled to
bus 902 for communicating information and command
selections to processor 904. Another type of user input
device is cursor control 916, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 904 and for
controlling cursor movement on display 912. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.



US 2023/0074580 Al

[0093] Computer system 900 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 900 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 900 in response to
processor 904 executing one or more sequences of one or
more instructions contained in main memory 906. Such
instructions may be read into main memory 906 from
another storage medium, such as storage device 910. Execu-
tion of the sequences of instructions contained in main
memory 906 causes processor 904 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

[0094] The term “storage media” as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 910. Volatile media includes dynamic
memory, such as main memory 906. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

[0095] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 902. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.
[0096] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 904 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid-state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 900 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 902. Bus 902 carries the
data to main memory 906, from which processor 904
retrieves and executes the instructions. The instructions
received by main memory 906 may optionally be stored on
storage device 910 either before or after execution by
processor 904.

[0097] Computer system 900 also includes a communica-
tion interface 918 coupled to bus 902. Communication
interface 918 provides a two-way data communication cou-
pling to a network link 920 that is connected to a local
network 922. For example, communication interface 918
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface

Mar. 9, 2023

918 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 918 sends and receives
electrical, electromagnetic, or optical signals that carry
digital data streams representing various types of informa-
tion.

[0098] Network link 920 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 920 may provide a connection
through local network 922 to a host computer 924 or to data
equipment operated by an Internet Service Provider (ISP)
926. ISP 926 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet” 928. Local
network 922 and Internet 928 both use electrical, electro-
magnetic, or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 920 and through communication interface 918,
which carry the digital data to and from computer system
900, are example forms of transmission media.

[0099] Computer system 900 can send messages and
receive data, including program code, through the network
(s), network link 920 and communication interface 918. In
the Internet example, a server 930 might transmit a
requested code for an application program through Internet
928, ISP 926, local network 922 and communication inter-
face 918.

[0100] The received code may be executed by processor
904 as it is received, and/or stored in storage device 910, or
other non-volatile storage for later execution.

Software Overview

[0101] FIG. 10 is a block diagram of a basic software
system 1000 that may be employed for controlling the
operation of computer system 900. Software system 1000
and its components, including their connections, relation-
ships, and functions, is meant to be exemplary only, and not
meant to limit implementations of the example embodiment
(s). Other software systems suitable for implementing the
example embodiment(s) may have different components,
including components with different connections, relation-
ships, and functions.

[0102] Software system 1000 is provided for directing the
operation of computer system 900. Software system 1000,
which may be stored in system memory (RAM) 906 and on
fixed storage (e.g., hard disk or flash memory) 910, includes
a kernel or operating system (OS) 1010.

[0103] The OS 1010 manages low-level aspects of com-
puter operation, including managing execution of processes,
memory allocation, file input and output (I/O), and device
1/0. One or more application programs, represented as
1002A, 1002B, 1002C . . . 1002N, may be “loaded” (e.g.,
transferred from fixed storage 910 into memory 906) for
execution by the system 1000. The applications or other
software intended for use on computer system 900 may also
be stored as a set of downloadable computer-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., a Web server, an app store,
or other online service).

[0104] Software system 1000 includes a graphical user
interface (GUI) 1015, for receiving user commands and data
in a graphical (e.g., “point-and-click” or “touch gesture”)
fashion. These inputs, in turn, may be acted upon by the



US 2023/0074580 Al

system 1000 in accordance with instructions from operating
system 1010 and/or application(s) 1002. The GUI 1015 also
serves to display the results of operation from the OS 1010
and application(s) 1002, whereupon the user may supply
additional inputs or terminate the session (e.g., log off).
[0105] OS 1010 can execute directly on the bare hardware
1020 (e.g., processor(s) 904) of computer system 900.
Alternatively, a hypervisor or virtual machine monitor
(VMM) 1030 may be interposed between the bare hardware
1020 and the OS 1010. In this configuration, VMM 1030
acts as a software “cushion” or virtualization layer between
the OS 1010 and the bare hardware 1020 of the computer
system 900.

[0106] VMM 1030 instantiates and runs one or more
virtual machine instances (“guest machines”). Each guest
machine comprises a “guest” operating system, such as OS
1010, and one or more applications, such as application(s)
1002, designed to execute on the guest operating system.
The VMM 1030 presents the guest operating systems with
a virtual operating platform and manages the execution of
the guest operating systems.

[0107] In some instances, the VMM 1030 may allow a
guest operating system to run as if it is running on the bare
hardware 1020 of computer system 900 directly. In these
instances, the same version of the guest operating system
configured to execute on the bare hardware 1020 directly
may also execute on VMM 1030 without modification or
reconfiguration. In other words, VMM 1030 may provide
full hardware and CPU virtualization to a guest operating
system in some instances.

[0108] In other instances, a guest operating system may be
specially designed or configured to execute on VMM 1030
for efficiency. In these instances, the guest operating system
is “aware” that it executes on a virtual machine monitor. In
other words, VMM 1030 may provide para-virtualization to
a guest operating system in some instances.

[0109] A computer system process comprises an allotment
of hardware processor time, and an allotment of memory
(physical and/or virtual), the allotment of memory being for
storing instructions executed by the hardware processor, for
storing data generated by the hardware processor executing
the instructions, and/or for storing the hardware processor
state (e.g., content of registers) between allotments of the
hardware processor time when the computer system process
is not running. Computer system processes run under the
control of an operating system, and may run under the
control of other programs being executed on the computer
system.

[0110] The above-described basic computer hardware and
software is presented for purposes of illustrating the basic
underlying computer components that may be employed for
implementing the example embodiment(s). The example
embodiment(s), however, are not necessarily limited to any
particular computing environment or computing device con-
figuration. Instead, the example embodiment(s) may be
implemented in any type of system architecture or process-
ing environment that one skilled in the art, in light of this
disclosure, would understand as capable of supporting the
features and functions of the example embodiment(s) pre-
sented herein.

Cloud Computing

[0111] The term “cloud computing” is generally used
herein to describe a computing model which enables on-

Mar. 9, 2023

demand access to a shared pool of computing resources,
such as computer networks, servers, software applications,
and services, and which allows for rapid provisioning and
release of resources with minimal management effort or
service provider interaction.

[0112] A cloud computing environment (sometimes
referred to as a cloud environment, or a cloud) can be
implemented in a variety of different ways to best suit
different requirements. For example, in a public cloud
environment, the underlying computing infrastructure is
owned by an organization that makes its cloud services
available to other organizations or to the general public. In
contrast, a private cloud environment is generally intended
solely for use by, or within, a single organization. A com-
munity cloud is intended to be shared by several organiza-
tions within a community; while a hybrid cloud comprises
two or more types of cloud (e.g., private, community, or
public) that are bound together by data and application
portability.

[0113] Generally, a cloud computing model enables some
of those responsibilities which previously may have been
provided by an organization’s own information technology
department, to instead be delivered as service layers within
a cloud environment, for use by consumers (either within or
external to the organization, according to the cloud’s public/
private nature). Depending on the particular implementa-
tion, the precise definition of components or features pro-
vided by or within each cloud service layer can vary, but
common examples include Software as a Service (SaaS), in
which consumers use software applications that are running
upon a cloud infrastructure, while a SaaS provider manages
or controls the underlying cloud infrastructure and applica-
tions. Platform as a Service (PaaS), in which consumers can
use software programming languages and development tools
supported by a PaaS provider to develop, deploy, and
otherwise control their own applications, while the PaaS
provider manages or controls other aspects of the cloud
environment (i.e., everything below the run-time execution
environment). Infrastructure as a Service (IaaS), in which
consumers can deploy and run arbitrary software applica-
tions, and/or provision processing, storage, networks, and
other fundamental computing resources, while an IaaS pro-
vider manages or controls the underlying physical cloud
infrastructure (i.e., everything below the operating system
layer). Database as a Service (DBaaS) in which consumers
use a database server or Database Management System that
is running upon a cloud infrastructure, while a DbaaS
provider manages or controls the underlying cloud infra-
structure, applications, and servers, including one or more
database servers.

[0114] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.



US 2023/0074580 Al

What is claimed is:
1. A computer-implemented method comprising:
identifying a plurality of function sets, among a plurality
of functions of a particular application, the one or more
functions of each function set being associated with a
common set of privilege dependencies;
identifying one or more transition function calls in
instructions for the particular application;
wherein a transition function call invokes a target function
of a first function set, of the plurality of function sets,
from within a caller function of a second function set of
the plurality of function sets;
modifying the instructions for the particular application,
to produce modified instructions, by replacing each
transition function call, of the one or more transition
function calls, with a wrapper function call that, when
executed, causes a target function of said each transi-
tion function call to be executed by a separate thread
with one or more privileges represented by a set of
privilege dependencies associated with a function set
that includes the target function; and
storing the modified instructions in memory or on disk;
wherein the method is performed by one or more com-
puting devices.
2. The computer-implemented method of claim 1,
wherein:
said identifying the plurality of function sets is based, at
least in part, on a fixed-point call graph comprising (a)
a plurality of nodes representing the plurality of func-
tions, and (b) one or more edges representing respec-
tive one or more function calls between the plurality of
functions in the particular application;
wherein each node, of one or more nodes of the fixed-
point call graph, is associated with a set of privilege
dependencies that comprises any privilege dependen-
cies for a function represented by said each node and
any privilege dependencies for functions represented
by any nodes that are reachable from said each node via
edges of the fixed-point call graph;
wherein the one or more functions of each function set, of
the plurality of function sets, are represented by one or
more contiguous nodes in the fixed-point call graph.
3. The computer-implemented method of claim 2, further
comprising, prior to said identifying the plurality of function
sets of the particular application:
performing iterative backward dataflow analysis on a
preliminary call graph that comprises the plurality of
nodes and the one or more edges;
wherein each node, of one or more nodes of the prelimi-
nary call graph, is associated with a preliminary set of
privilege dependencies that comprises those privilege
dependencies for a function represented by said each
node; and
generating the fixed-point call graph by associating each
node, of one or more nodes in the preliminary call
graph, with an associated set of privilege dependencies
identified via the iterative backward dataflow analysis.
4. The computer-implemented method of claim 3, further
comprising:
prior to said identifying the plurality of function sets of
the particular application:
identifying one or more transition edges of the fixed-
point call graph;

Mar. 9, 2023

wherein each transition edge, of the one or more
transition edges, connects nodes associated with
different sets of privileges;
wherein at least one function set, of the plurality of
function sets, comprises multiple functions; and

wherein the functions of any function set, of the plurality
of function sets, comprising multiple functions are
connected by non-transition edges in the fixed-point
call graph.

5. The computer-implemented method of claim 1, further
comprising:

executing the modified instructions to cause a first thread

executing a first function that includes a particular
wrapper function call, which replaced a particular func-
tion call to a particular function, to execute a particular
wrapper function called by the particular wrapper func-
tion call;

wherein the particular wrapper function shifts control to a

second thread for execution of the particular function;
wherein the second thread is associated with a different set
of privileges than the first thread.

6. The computer-implemented method of claim 5,
wherein prior to shifting control to the second thread, the
particular wrapper function spawns the second thread and
associates the second thread with the different set of privi-
leges.

7. The computer-implemented method of claim 5,
wherein the second thread is initialized prior to executing
the particular wrapper function.

8. The computer-implemented method of claim 7,
wherein the second thread is selected to run the particular
function based on the second thread being associated with a
set of privileges identified by a set of privilege dependencies
associated with the particular function.

9. The computer-implemented method of claim 7,
wherein:

the second thread is selected to run the particular function

based on the second thread being associated with a
superset of a set of privileges identified by a set of
privilege dependencies associated with the particular
function;

the superset comprises one or more privileges not iden-

tified by a set of privilege dependencies associated with
the particular function; and

the method further comprises, prior to the second thread

executing the particular function, disassociating the
second thread from the one or more privileges.

10. The computer-implemented method of claim 1, fur-
ther comprising:

receiving a request to modify the instructions for the

particular application;

wherein said modifying the instructions is performed in

response to receiving the request; and

returning the modified instructions as a response to the

request.

11. The computer-implemented method of claim 1,
wherein:

each of one or more function sets, of the plurality of

function sets, includes at least one function that is
associated with one or more different privilege depen-
dencies than the other functions in said each function
set;



US 2023/0074580 Al

the common set of privilege dependencies for each func-
tion set, of the one or more function sets, comprises a
superset of privilege dependencies for the functions of
said each function set.

12. One or more non-transitory computer-readable media
storing one or more sequences of instructions that, when
executed by one or more processors, cause:

identifying a plurality of function sets, among a plurality

of functions of a particular application, the one or more
functions of each function set being associated with a
common set of privilege dependencies;

identifying one or more transition function calls in

instructions for the particular application;

wherein a transition function call invokes a target function

of a first function set, of the plurality of function sets,
from within a caller function of a second function set of
the plurality of function sets;

modifying the instructions for the particular application,

to produce modified instructions, by replacing each
transition function call, of the one or more transition
function calls, with a wrapper function call that, when
executed, causes a target function of said each transi-
tion function call to be executed by a separate thread
with one or more privileges represented by a set of
privilege dependencies associated with a function set
that includes the target function; and

storing the modified instructions in memory or on disk.

13. The one or more non-transitory computer-readable
media of claim 12, wherein:

said identifying the plurality of function sets is based, at

least in part, on a fixed-point call graph comprising (a)
a plurality of nodes representing the plurality of func-
tions, and (b) one or more edges representing respec-
tive one or more function calls between the plurality of
functions in the particular application;

wherein each node, of one or more nodes of the fixed-

point call graph, is associated with a set of privilege
dependencies that comprises any privilege dependen-
cies for a function represented by said each node and
any privilege dependencies for functions represented
by any nodes that are reachable from said each node via
edges of the fixed-point call graph;

wherein the one or more functions of each function set, of

the plurality of function sets, are represented by one or
more contiguous nodes in the fixed-point call graph.

14. The one or more non-transitory computer-readable
media of claim 13, wherein the one or more sequences of
instructions further comprise instructions that, when
executed by one or more processors, cause, prior to said
identifying the plurality of function sets of the particular
application:

performing iterative backward dataflow analysis on a

preliminary call graph that comprises the plurality of
nodes and the one or more edges;

wherein each node, of one or more nodes of the prelimi-

nary call graph, is associated with a preliminary set of
privilege dependencies that comprises those privilege
dependencies for a function represented by said each
node; and

generating the fixed-point call graph by associating each

node, of one or more nodes in the preliminary call
graph, with an associated set of privilege dependencies
identified via the iterative backward dataflow analysis.

Mar. 9, 2023

15. The one or more non-transitory computer-readable
media of claim 14, wherein the one or more sequences of
instructions further comprise instructions that, when
executed by one or more processors, cause:
prior to said identifying the plurality of function sets of
the particular application:
identifying one or more transition edges of the fixed-
point call graph;
wherein each transition edge, of the one or more
transition edges, connects nodes associated with
different sets of privileges;
wherein at least one function set, of the plurality of
function sets, comprises multiple functions; and

wherein the functions of any function set, of the plurality
of function sets, comprising multiple functions are
connected by non-transition edges in the fixed-point
call graph.

16. The one or more non-transitory computer-readable
media of claim 12, wherein the one or more sequences of
instructions further comprise instructions that, when
executed by one or more processors, cause:

executing the modified instructions to cause a first thread

executing a first function that includes a particular
wrapper function call, which replaced a particular func-
tion call to a particular function, to execute a particular
wrapper function called by the particular wrapper func-
tion call;

wherein the particular wrapper function shifts control to a

second thread for execution of the particular function;
wherein the second thread is associated with a different set
of privileges than the first thread.

17. The one or more non-transitory computer-readable
media of claim 16, wherein prior to shifting control to the
second thread, the particular wrapper function spawns the
second thread and associates the second thread with the
different set of privileges.

18. The one or more non-transitory computer-readable
media of claim 16, wherein the second thread is initialized
prior to executing the particular wrapper function.

19. The one or more non-transitory computer-readable
media of claim 18, wherein the second thread is selected to
run the particular function based on the second thread being
associated with a set of privileges identified by a set of
privilege dependencies associated with the particular func-
tion.

20. The one or more non-transitory computer-readable
media of claim 18, wherein:

the second thread is selected to run the particular function

based on the second thread being associated with a
superset of a set of privileges identified by a set of
privilege dependencies associated with the particular
function;

the superset comprises one or more privileges not iden-

tified by a set of privilege dependencies associated with
the particular function; and

the one or more sequences of instructions further com-

prise instructions that, when executed by one or more
processors, cause, prior to the second thread executing
the particular function, disassociating the second thread
from the one or more privileges.

21. The one or more non-transitory computer-readable
media of claim 12, wherein the one or more sequences of
instructions further comprise instructions that, when
executed by one or more processors, cause:



US 2023/0074580 Al Mar. 9, 2023
11

receiving a request to modify the instructions for the
particular application;

wherein said moditying the instructions is performed in
response to receiving the request; and

returning the modified instructions as a response to the
request.

22. The one or more non-transitory computer-readable

media of claim 12, wherein:

each of one or more function sets, of the plurality of
function sets, includes at least one function that is
associated with one or more different privilege depen-
dencies than the other functions in said each function
set;

the common set of privilege dependencies for each func-
tion set, of the one or more function sets, comprises a
superset of privilege dependencies for the functions of
said each function set.

#* #* #* #* #*



