
Master’s Thesis Nr. 505

Systems Group, Department of Computer Science, ETH Zurich

Towards resource and interference-aware scheduling of ML workloads

by

Paul Elvinger

Supervised by

Prof. Ana Klimovic, Foteini Strati

March 2024 – September 2024

Abstract

Graphics Processing Units (GPUs) are crucial for Deep Neural Network
(DNN) operations, yet they often suffer from under-utilization due to over-
allocation or workloads unable to fully exploit their capabilities. To address
this, spatial sharing techniques have emerged, allowing multiple workloads to
share GPUs. However, model colocation can lead to interference, increasing
inference latencies and potentially violating Service Level Objectives (SLOs)
in ML serving scenarios. While various ML inference cluster schedulers have
proposed different colocation approaches, comparing their performance has
been challenging due to diverse underlying architectures and metrics for
modeling GPU utilization and interference. To overcome this, we present a
novel modular ML inference cluster framework that abstracts core scheduler
components and enables easy integration of various colocation policies. We
implemented and evaluated state-of-the-art ML inference colocation poli-
cies within this framework, allowing for a comprehensive analysis under
various SLOs and loads. Our evaluations reveal that effective ML inference
cluster schedulers must accurately model interference at multiple levels, op-
timize batch sizes for inference, and account for intra-cluster queuing and
data transmission delays. Furthermore, we introduce fine-grained profiling
measurements at the kernel granularity, defining new metrics to quantify
model resource requirements more precisely. This work contributes to ad-
vancing ML inference scheduling techniques by providing a common ground
for comparison, identifying crucial properties for schedulers and laying the
foundations for more efficient resource allocation strategies in GPU clusters.

Acknowledgements

I would like to express my deepest gratitude to Foteini Strati for her invalu-
able guidance and support throughout the course of this thesis. Over the
past 12 months, I have had the privilege of collaborating with Foteini on
several projects, including this one, which has provided me with profound
insights into the world of research. Her talent and problem-solving approach
have been a true source of inspiration. I am especially grateful for the time
she dedicated to our discussions, often during extended meetings. These
conversations have been crucial to the progress and content of this work.

I am also sincerely grateful to Prof. Ana Klimovic for giving me the op-
portunity to work on these projects and for her continued guidance and
involvement. Her insightful feedback and direction have been of great value
for this work. I have particularly appreciated how she and the entire EASL
group, have welcomed me as a part of the research group. Throughout my
12-month involvement, I felt like an integral member of the group rather
than just a student.

The active roles both Foteini and Ana have played in this thesis, through
their dedication of time and effort to discussions and feedback, have been
invaluable and deeply appreciated. Their involvement has made this work
so much more interesting and engaging.

To Foteini and Ana, thank you both so much for your time, expertise, and
unwavering support.

Contents

1 Introduction 1

2 Background 4
2.1 Machine Learning Training vs. Inference 4
2.2 Graphics Processing Units (GPUs) 5

2.2.1 NVIDIA Programming Model 5
2.2.2 NVIDIA GPU architecture 6

2.3 GPU Sharing Techniques . 8
2.3.1 Temporal Sharing . 8
2.3.2 Spatial Sharing . 8

2.4 Existing Inference Systems 11
2.4.1 RayServe . 12
2.4.2 NVIDIA Triton Inference Server 12

3 Related Work 13
3.1 Overview of ML Inference Schedulers 13
3.2 Clipper: A Low-Latency Online Prediction Serving System . 14
3.3 Dynamic Space-Time Scheduling for GPU Inference 14
3.4 Ebird: Elastic batch for improving responsiveness and through-

put of deep learning services 14
3.5 Serving DNNs like Clockwork: Performance Predictability

from the Bottom Up . 15
3.6 GSLICE: Controlled Spatial Sharing of GPUs for a Scalable

Inference Platform . 15
3.7 Irina: Accelerating DNN Inference with efficient Online Schedul-

ing . 16
3.8 Abacus: Enable Simultaneous DNN Services Based on Deter-

ministic Operator Overlap and Precise Latency Prediction . . 16
3.9 INFaaS: Automated Model-less Inference Serving 17
3.10 Interference-Aware Scheduling for Inference Serving 18
3.11 Serving DNN Models with Multi-Instance GPUs: A case of

the Reconfigurable Machine Scheduling Problem 18

I

Contents

3.12 Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-
Native Model Serving . 19

3.13 GPUlet: Serving Heterogeneous Machine Learning Models on
Multi-GPU Servers with Spatio-Temporal Sharing 19

3.14 AlpaServe: Statistical Multiplexing with Model Parallelism
for Deep Learning Serving . 20

3.15 Clover: Toward Sustainable AI with Carbon-Aware Machine
Learning Inference . 20

3.16 iGniter: Interference-Aware GPU Resource Provisioning for
Predictable DNN Inference in the Cloud 21

3.17 Sheperd: Serving DNNs in the Wild 21
3.18 USHER: Holistic Interference Avoidance for Resource Opti-

mized ML Inference . 22

4 Architecture 23
4.1 Overview . 23
4.2 Class Definitions . 25
4.3 Cluster Level . 25

4.3.1 Cluster Controller Process 27
4.3.2 Model Placement Policy 28
4.3.3 Router . 29
4.3.4 Result Server . 32
4.3.5 Cluster Store . 32
4.3.6 Clients . 32
4.3.7 Benchmark . 36

4.4 Node Level . 37
4.4.1 Node Controller . 37

4.5 Worker Level . 40
4.5.1 Overview . 40
4.5.2 Dispatcher . 41
4.5.3 Result Processor . 45

4.6 Networking . 46
4.6.1 The choice of gRPC 46
4.6.2 Simulating the Network Transmission Latency 47

4.7 Current limitations . 49
4.7.1 Models are expected to fit on a single GPU 49
4.7.2 Lack of Support for Dynamic Placement Policy 50
4.7.3 Move clients to a separate machine 50
4.7.4 gRPC bottlenecks the overall throughput of the cluster 50

5 Placement Policies 51
5.1 iGniter . 51

5.1.1 Overview of iGniter 51
5.1.2 Analytical Model to predict the inference latency . . . 52

II

Contents

5.1.3 A heuristic placement algorithm to minimize cost . . . 53
5.1.4 Profiling . 54
5.1.5 Integration of iGniter into our system 56

5.2 Usher . 56
5.2.1 Overview of Usher . 57
5.2.2 Implementation of Usher 61

5.3 Usher extended with different metrics 64
5.3.1 Weighted Average Achieved Occupancy 64
5.3.2 Weighted SM Utilization 66

5.4 Usher extended with Mixed Integer Linear Programming . . . 69
5.4.1 Problematic Placement Order within and Across Groups 69
5.4.2 Problematic Replication Factor Multiplier 73
5.4.3 An Mixed Integer Linear Programming (MILP) Ap-

proach . 74

6 Evaluation 79
6.1 Evaluation Environment . 79

6.1.1 Machine Setup . 79
6.1.2 Models and Input Data used for Evaluation 80
6.1.3 Placement Policies used for Evaluations 81
6.1.4 Goodput as Evaluation Metric 82
6.1.5 Clients . 82

6.2 Limiting the number of GPUs 83
6.2.1 Limiting Number of GPUs with Vision Models 83
6.2.2 Limiting the Number of GPUs for Vision and Lan-

guage Models . 93
6.3 Changing the RPS and SLO 98

7 Conclusion and Future Work 105
7.1 Conclusion . 105
7.2 Future Work . 106

A Appendix 108
A.1 Usher Profiling Results on a V100 108
A.2 Additional Evaluation Plots 110

A.2.1 Limiting Number of GPUs with Vision Models with-
out setting MPS shares at a target submission rate of
500 req/s . 110

A.2.2 Limiting the Number of GPUs with Vision Models and
a Target Submission Rate of 1000 req/s 111

A.2.3 Analysis of SLO and Target Load Variations for a Het-
erogeneous Model Mix 111

Bibliography 113

III

Declaration

The author of this thesis must acknowledge the use of generative artificial
intelligence for different parts of this work.

• Text Revision and Spell-Checking: Claude 3.5 Sonnet [1] was
utilized to revise the text for conciseness and spell-checking. The entire
report is based on the author’s own words.

• Debugging Assistance: Claude 3.5 Sonnet [1] and occasional use of
GPT-4o [35] were utilized on multiple occasions throughout this work
for debugging purposes.

• Plotting Script Assistance: GitHub Copilot [9] was used as an
assistance for writing the plotting scripts.

IV

Chapter 1

Introduction

Deep Neural Networks (DNNs) have emerged as the driving force behind
numerous remarkable advancements in machine learning (ML) and artificial
intelligence (AI) in recent years. This success can be largely attributed to
innovations such as Convolutional Neural Networks (CNNs) [69] and, more
recently, Large Language Models (LLMs) [1, 12, 34] built on transformer
architectures [78]. While initially designed for gaming applications, Graphics
Processing Units (GPUs) have become indispensable for ML workloads due
to their capacity for large-scale parallel computations. Due to their high
computational capabilities, several studies [65,80] have revealed that GPUs
are often underutilized, leading to inefficiencies in resource usage. Given
the high costs and limited availability of GPUs, there has been a growing
interest within the research community to improve the utilization of these
critical hardware accelerators.

One popular technique to increase GPU utilization was the use of larger
batch sizes, which not only improves throughput but also ensures more ef-
ficient resource use. While this approach is suitable for training workloads
that may run for days or months, it proves inadequate for inference work-
loads, which are typically completed in milliseconds or seconds. Larger batch
sizes, although efficient in utilizing resources, can lead to higher latencies for
individual requests-an undesirable outcome for inference tasks that are often
part of latency-critical applications subject to strict Service Level Objectives
(SLOs). Consequently, the batch sizes used in inference are constrained by
these SLOs, limiting their effectiveness. Moreover, as GPUs become increas-
ingly powerful, it is becoming challenging for individual applications to fully
utilize and saturate these resources.

To address this challenge, both industry and academia have shifted to-
wards enabling the sharing of GPUs across multiple inference workloads.
The two main strategies for sharing GPUs are temporal sharing and spa-
tial sharing. Temporal sharing involves dividing GPU time among different
workloads, adjusting the time slices based on workload demand [66, 82].

1

Chapter 1. Introduction

However, this method often fails to fully utilize the GPU’s resources since
individual workloads may still leave parts of the GPU underutilized. As a re-
sult, attention has turned toward spatial sharing, where multiple workloads
can execute concurrently by partitioning the GPU’s resources.

Hardware manufacturers, such as NVIDIA, have introduced hardware-
level features [23, 24] to support spatial sharing, and recent research has
built extensively on these innovations. Several studies have proposed differ-
ent approaches for spatially sharing GPUs to minimize interference between
colocated models and ensure that requests are served within their SLOs.
These approaches typically involve estimating a model’s resource require-
ments to determine which models can be colocated without exceeding the
GPU’s capacity while still guaranteeing SLOs. Common techniques include
profiling models upfront to measure their exact resource requirements when
colocated with other models [60], training machine learning-based resource
estimators [72,79], or developing models to predict interference [72,81].

However, we observe two key characteristics of state-of-the-art systems
that limit their comparability and effectiveness. Each system models GPU
utilization and interference in its own unique way, raising questions about
which metrics are most accurate and at what granularity they should be
applied. Furthermore, these systems are often based on different underlying
frameworks, frequently tightly coupled to specific use cases or unnecessarily
complex (e.g., Triton [31], Ray Serve [51]). As a consequence, comparing dif-
ferent approaches is very challenging, as there is no common ground where
the underlying system remains constant while only the model placement or
colocation policy varies. This lack of standardization makes it hard to iden-
tify the most effective strategies for ML inference scheduling and resource
allocation in GPU clusters.

To address these issues, this thesis makes the following contributions:

1. We introduce a novel modular serving system that provides the core
architecture for any ML inference cluster scheduler and allows for easy
exchange of various components. This system abstracts core compo-
nents of existing ML inference cluster schedulers, enabling the integra-
tion and evaluation of different placement policies on common grounds.

2. Using this system, we have implemented and evaluated state-of-the-art
ML inference colocation policies, conducting a comprehensive perfor-
mance analysis under various Service Level Objectives and loads. This
approach enables us to identify several shortcomings and suggest mod-
ifications to circumvent these limitations.

3. Based on this extensive analysis, we uncover key insights that should
drive ML inference colocation policies in future work, such as:

• The clear need to accurately model interference at various levels,
a task that is only partially achieved by related work.

2

Chapter 1. Introduction

• The importance of modeling intra-cluster queuing and data trans-
mission delays. Related work is mostly limited to modeling what
happens at the level of the GPU.

4. We conduct fine-grained profiling measurements at the kernel granu-
larity, allowing us to define new metrics to quantify model resource
requirements.

The remainder of this work is structured as follows: Chapter 2 introduces
the necessary background and lays the foundation for this work. Chapter
3 summarizes the most relevant recent work in the space of ML inference
schedulers. Chapter 4 introduces and explains our novel modular ML in-
ference scheduler in great detail. In Chapter 5, we explain the placement
policies that will be evaluated as part of this work. We present the corre-
sponding results and analysis in Chapter 6, and we conclude our work with
Chapter 7, where we summarize our findings and discuss future work.

3

Chapter 2

Background

This section provides the essential background information necessary for
understanding the remainder of this work. We begin by analyzing the key
differences between Machine Learning training and inference in Section 2.1.
Section 2.2 offers a comprehensive overview of GPU architecture. In Section
2.3, we delve into various GPU sharing techniques, exploring methods for
optimizing resource utilization. Finally, Section 2.4 presents an overview of
existing ML inference systems.

2.1 Machine Learning Training vs. Inference

Machine Learning (ML) models undergo two primary phases during their
lifecycle: training and inference. These phases differ significantly in their
objectives, operational constraints, and resource requirements.

The training phase involves iterative processing of large datasets to learn
a function that maps inputs to outputs. During this phase, models perform
successive forward-backward passes over the training data, applying a func-
tion to inputs and updating the model parameters with respect to a loss
function. This process is computationally intensive, with state-of-the-art
models often requiring months to reach high levels of accuracy [1, 12, 34].
Training typically occurs offline and is optimized for throughput, maximiz-
ing the number of processed samples per unit of time.

In contrast, the inference phase applies the trained model to new data
for prediction, involving only a forward pass. Inference often operates un-
der strict real-time constraints, with latencies measured in milliseconds or
seconds. Many ML applications crucial to systems such as search engines,
advertising platforms, and autonomous vehicles [67, 73] must meet specific
Service Level Objectives (SLOs) for response times. This requirement ne-
cessitates that responses be available within a specified timeframe to be
considered valid. Unlike training, inference usually occurs online, with data
arriving at irregular intervals as part of requests.

4

Chapter 2. Background

The distinct nature of these phases leads to divergent resource allocation
strategies. While training is primarily optimized for throughput to acceler-
ate the overall process, inference requires a balanced optimization between
throughput and individual request latency. Data availability also differs
significantly: training data is typically available upfront, allowing for more
predictable resource allocation, whereas inference data arrives in real-time,
necessitating more flexible resource management to account for fluctuating
loads.

The increasing complexity and size of ML models have necessitated a
shift from commodity hardware to specialized computing clusters. Modern
ML systems often rely on hardware accelerators such as GPUs or TPUs [14]
to offload the heavy computation of model training and inference. Given
the high operational costs of these clusters, it is crucial to implement effec-
tive scheduling and resource allocation strategies that balance performance,
efficiency, and cost-effectiveness.

2.2 Graphics Processing Units (GPUs)

Modern ML training and inference are primarily powered by specialized
hardware accelerators that provide huge amount of computational resources
in order to exploit parallel programming patterns in program execution.
Among these, Graphics Processing Units (GPUs) have gained significant at-
tention in recent years. While other hardware accelerators, such as Google’s
Tensor Processing Units (TPUs), can serve similar purposes, this work fo-
cuses exclusively on GPUs. Furthermore, given NVIDIA’s market domi-
nance in the GPU sector we have decided to exclusively use NVIDIA GPUs
as part of this work. As a consequence this section will concentrate on
NVIDIA GPUs, providing a high-level overview of their programming model
and architecture.

2.2.1 NVIDIA Programming Model

The typical process for leveraging GPUs for computation involves three main
steps:

1. The data and the program need to be transferred from the host (CPU)
to the device (GPU).

2. Next the program is executed on the device.

3. Finally the execution results are copied from the device back to the
host.

To execute code on the GPU, programmers must write their programs
in the form of CUDA kernels. CUDA [6], which stands for Compute Unified

5

Chapter 2. Background

Device Architecture, is an extension of C/C++ programming and serves as
NVIDIA’s parallel computing platform and API for GPU programming.

Once the program and data are transferred to the GPU, CUDA kernels
are executed by a collection of GPU threads. These threads are organized
into thread blocks, which are further organized into a grid. Threads within
a block typically collaborate in parallel to compute a value. Thread blocks
and grids can be two- or three-dimensional, and it is up to the programmer
to specify their dimension upon kernel launch, determining the total number
of threads used for the kernel execution.

Within a block, threads are further grouped into warps, each consisting
of 32 threads. A warp constitutes the unit of scheduling in each clock cy-
cle, meaning instructions are always dispatched to groups of 32 threads in
parallel (Single Instruction Multiple Threads, SIMT). The number of warps
that can run concurrently depends on the compute capabilities of individual
GPUs.

It is important to note that GPU threads differ significantly from CPU
threads. CPU threads are generally heavyweight entities that must be
swapped on and off the CPU to provide multi-threaded capabilities, a pro-
cess that is slow and expensive compared to GPU threading. In contrast,
GPU threads are extremely lightweight, with hundreds to thousands typi-
cally queued up for work. Since separate registers are allocated to all active
threads, no swapping of registers or other state is necessary when switching
among GPU threads. GPU resources remain allocated to each thread until
it completes its execution.

2.2.2 NVIDIA GPU architecture

Figure 2.1 provides a simplified view of the NVIDIA GPU architecture, often
referred to as the device.

At the core of NVIDIA GPUs are Streaming Multiprocessors (SMs or
SMXs). Modern NVIDIA GPUs typically contain tens to hundreds of these
SMs. Each SM comprises a large set of functional units such as FP32,
FP64, or Tensor Cores, each supporting and particularly suited for different
types of instructions. For instance, tensor cores are specifically designed for
efficient matrix multiplication operations.

In addition to functional units, each SM hosts a substantial number of
registers that can be used by different threads during execution, as well as
some amount of shared memory and an L1 cache. Each thread is allocated
a specific number of registers from the register file for its execution. These
registers are private to the thread, and threads cannot access each other’s
registers.

Shared memory provides a fast mechanism for inter-thread communica-
tion and data sharing between threads within the same block, offering an
alternative to relying on global memory. It is typically not used unless ex-

6

Chapter 2. Background

Figure 2.1: Simplified architecture of an NVIDIA GPU. The figure was
copied from Afra et al. [59]

plicitly allocated by the programmer. Shared memory is on-chip and shares
space with the L1 cache, which is used to cache access to the L2 and global
memory. There is a configurable split that defines how much space is used
for the L1 cache and shared memory. Unlike shared memory, the L1 cache
is transparent to the programmer and cannot be accessed programmatically.
It typically has a size of 64 to 128KB per SM.

Below the L1 cache and shared memory in the memory hierarchy is the
L2 cache. The L2 cache is still on-chip and is shared among all SMs. It is
used to cache accesses to global memory and typically ranges in size from
512KB to a few MB.

At the bottom of the hierarchy is the global memory, also referred to
as Device Memory. The device memory is no longer on-chip and can be
considered the GPU equivalent of RAM on the CPU. It provides the largest
memory space but is also the slowest to access on the GPU. Data stored in
global memory persists across kernel invocations and is explicitly managed
by the programmer.

Other types of memory such as Constant Memory or Texture Memory
exist, but these go beyond the scope of knowledge required for this work.

NVIDIA provides a set of profilers that allow programmers to target spe-
cific components and levels of the GPU architecture and memory hierarchy.
Notably, the NVIDIA Nsight Systems (nsys) profiler [28] is designed for

7

Chapter 2. Background

gathering system-wide information, providing a global overview of an entire
program’s performance. The NVIDIA Nsight Compute (ncu) profiler [26]
allows for the collection of very detailed metrics at the granularity of indi-
vidual kernels. The System Manager Interface (nvidia-smi) profiler [29]
can be used to monitor entire GPU devices. While additional profilers like
NVIDIA Nsight Graphics [27] exist, they are not relevant in the context of
this work.

2.3 GPU Sharing Techniques

The high operational and environmental costs associated with running clus-
ters of GPUs [70] necessitate maximizing their utilization and efficiency.
While increasing batch sizes has been a popular method to improve GPU
utilization, this approach is limited in the context of ML inference due to
the strict Service Level Objectives (SLOs) that must be met for individ-
ual requests. Furthermore, as newer GPUs become increasingly powerful
with impressive parallel computation capabilities, individual programs of-
ten struggle to fully exploit these resources. Consequently, research has
shifted towards exploring GPU sharing among multiple workloads. This
section introduces two main techniques for GPU sharing: temporal and
spatial sharing.

2.3.1 Temporal Sharing

Temporal sharing of GPUs involves allocating GPU resources to different
tasks over time, rather than simultaneously. In this model, workloads are
scheduled to take turns accessing the GPU, preventing parallel execution.
This technique can be particularly useful when models sharing the GPU
have different arrival patterns. Time slots can be allocated to each model
based on their arrival distribution, ensuring that models experiencing higher
load receive more GPU time. However, due to the small batch sizes typically
used for ML inference, individual jobs often cannot fully exploit the GPU
resources using this method alone and utilization remains poor.

2.3.2 Spatial Sharing

As an alternative to temporal sharing, research has begun to explore spatial
sharing, which allows multiple workloads to run in parallel without waiting
for allocated time slots, thereby exploiting underutilized resources. How-
ever, as multiple applications execute on the same GPU, they may interfere
with each other, potentially resulting in higher latencies which is critical for
ML inference workloads. This section provides an overview of NVIDIA’s
hardware support for spatial colocation.

8

Chapter 2. Background

Figure 2.2: NVIDIA Multi-Process Service (MPS): pre-Volta vs post-Volta.
The figure was taken from the official NVIDIA MPS documentation [24].

NVIDIA Multi-Process Service (MPS)

For GPUs with a compute capability ≥ 3.5, NVIDIA introduced the Multi-
Process Service (MPS) [24] hardware support, enabling multiple CUDA ap-
plications to run simultaneously on the same GPU by sharing its resources.

When a CUDA program initiates, it creates a CUDA context that en-
capsulates all the hardware resources necessary for the program to manage
memory and launch work on the GPU. By default, without MPS, CUDA
does not support concurrent execution of workloads belonging to different
CUDA contexts. Instead, these workloads are scheduled in a time-sliced
manner.

In pre-Volta GPU architectures, activating MPS involves running an
MPS server in the background. This server consolidates potentially multiple
CUDA contexts into a single CUDA context, making it appear as if all work
is part of the same program. Consequently, concurrent execution becomes
possible, and GPU resources are shared among all workloads.

From Volta GPU architectures onward, NVIDIA introduced additional
support allowing to further constrain applications to separate sets of Stream-
ing Multiprocessors (SMs). It is important to note that lower-level resources,
such as the L2 cache, are still shared among all applications. In this case, ap-
plications bypass the MPS server and submit their workload directly to the
hardware. The MPS server remains responsible for ensuring simultaneous
scheduling among the shared resources. Figure 2.2 illustrates the difference
between pre-Volta and post-Volta MPS implementations. It should be noted
that constraining an application to a set of SMs is optional. It is still pos-
sible in post-Volta architectures to run MPS without restricting the set of
available SMs to a program.

9

Chapter 2. Background

Figure 2.3: NVIDIA Multi Instance GPU (MIG). The figure was taken from
the official NVIDIA MIG documentation [23].

It is crucial to understand that MPS does not provide error isolation
between different CUDA applications. Consequently, an error in one appli-
cation may result in the failure of all other CUDA applications as well.

MPS should not be confused with CUDA streams. While MPS utilizes
CUDA streams underneath, its purpose is to enable simultaneous execution
of different CUDA applications running as separate processes. In contrast,
CUDA streams are used as a means to overlap independent computations
within the same CUDA application through the use of multiple streams.

NVIDIA Multi-Process Instance (MIG)

NVIDIA introduced Multi-Instance GPU (MIG) [23] technology with the
Ampere architecture, requiring a compute capability of 8.0 or higher. MIG
represents a significant advancement in GPU virtualization and resource
partitioning, offering a more robust and secure approach to GPU sharing.
Figure 2.3 illustrates a high-level overview of MIG.

MIG allows for the secure partitioning of a single GPU into up to seven
separate GPU Instances for CUDA applications, providing multiple users
with isolated GPU resources for optimal utilization. For example, the
NVIDIA A100 GPU supports 19 possible configurations, offering flexibility
in resource allocation based on workload requirements. Each MIG partition
contains portions of Streaming Multiprocessors (SMs) and memory slices.
Importantly, MIG partitioning extends beyond just compute and memory

10

Chapter 2. Background

resources. L2 cache banks, memory controllers, and DRAM address buses
are also part of the partitioning scheme, ensuring isolation of resources,
which provides several benefits:

• Error Isolation: Unlike MPS, MIG does not use a shared GPU con-
text. This separation ensures that errors in one partition do not affect
applications running in other partitions, enhancing system reliability.

• Performance Predictability: Hard partitioning guarantees that
each instance has access to its allocated resources, eliminating inter-
ference between multiple CUDA applications.

• Security: The strict isolation between partitions enhances security,
making MIG suitable for multi-tenant environments where data pri-
vacy is crucial.

However this hard-partitioning also has downsides. Once the partitions
are created, unused resources in one partition cannot be reclaimed by other
partitions [74]. In addition repartitioning is not dynamic. It requires all
applications to stop in order to apply the new configuration, making it less
suitable for cases where the configurations need to be updated frequently.

It’s worth mentioning that MPS and MIG are complementary technolo-
gies. While MIG provides hard partitioning at the hardware level, MPS
can be used within individual MIG partitions to further optimize resource
utilization. This combination allows for fine-grained control over GPU re-
sources, enabling administrators to balance isolation requirements with ef-
ficient resource sharing.

2.4 Existing Inference Systems

The rise of ML inference in various applications has led to the develop-
ment of numerous ML inference serving systems in recent years. We have
reviewed some of these systems, evaluating the feasibility of utilizing them
as the foundation for our research. Our assessment focused on the effort
required to establish a functional setup that would facilitate the evaluation
of different placement policies. For some of these systems, several imple-
mentation questions remained at the end of our investigation, that would
each have been subject to further time consuming investigations. We con-
cluded that developing a custom, minimally functional system would best
serve our research objectives. This approach allowed us to focus on the core
functionality required for our study, providing greater flexibility in imple-
menting and testing various placement policies. Nevertheless, we provide an
overview on two of the most popular ML inference serving systems below.

11

Chapter 2. Background

2.4.1 RayServe

RayServe [51] stands out as a widely adopted open-source model serving li-
brary built upon the Ray framework. Its framework-agnostic nature allows
for seamless integration with various Python-based deep learning frame-
works, including PyTorch, TensorFlow, and Keras. RayServe is engineered
to scale across large heterogeneous clusters of machines and supports the
colocation of applications on GPUs. Furthermore, it offers advanced fea-
tures such as dynamic batching to optimize inference performance.

2.4.2 NVIDIA Triton Inference Server

The NVIDIA Triton Inference Server [31] has recently attracted increasing
attention within the research community and has been utilized in notable
works such as iGniter [81]. Similar to RayServe, the Triton Inference Server
offers support for multiple machine learning frameworks, including PyTorch,
TensorFlow, ONNX, and custom models. It addresses critical challenges in
the field of ML inference, such as maximizing GPU utilization and delivering
low-latency responses. The server also incorporates advanced features like
dynamic batching to enhance inference efficiency and supports heterogenous
clusters.

12

Chapter 3

Related Work

This chapter provides an overview on related work relevant for ML inference
schedulers.

3.1 Overview of ML Inference Schedulers

Table 3.1 presents a comprehensive overview of the machine learning (ML)
inference schedulers examined in this study. To denote various optimization
objectives, we employ the following symbols: latency (♣), throughput (♠),
utilization (♢), cost (♡), accuracy (∞), simplified deployment (△), and car-
bon emissions (□). The table delineates several key characteristics for each
scheduler, including implementation of GPU sharing techniques, utilization
of batching as a method to enhance utilization, awareness of potential in-
terference, and support for multi-GPU configurations.

Scheduler Objectives GPU Sharing Batching Profiling Intf. Aware multi GPU

Clipper [61] ♣♠∞△ ✓ ✓
Space Time [68] ♠♢ spatial
Ebird [62] ♣♠♢ ✓ ✓
Clockwork [66] ♣♠ temporal ✓ ✓
GSLICE [64] ♠♢ spatial ✓
Irina [80] ♣♠♢ spatial ✓ ✓
Abacus [63] ♣♠♢ spatial ✓ ✓ ✓
INFaaS [75] ♣♠♡△ ✓ ✓ ✓
Interference-Aware ♣ spatial ✓ ✓
Scheduling [72]
MIG-Serving [77] ♡ spatial ✓ ✓
Morphling [79] ♠△ ✓ ✓ ✓
Gpulet [60] ♣♠♢ spatial + temporal ✓ ✓ ✓ ✓
AlpaServe [71] ♣♠ temporal ✓ ✓
Clover [70] ♣□ spatial ✓ ✓
iGniter [81] ♣♢♡ spatial ✓ ✓ ✓ ✓
Shepherd [82] ♠♢ temporal ✓ ✓ ✓
Usher [76] ♣♠ spatial ✓ ✓ ✓

Table 3.1: Overview of ML Inference Schedulers on GPUs

13

Chapter 3. Related Work

3.2 Clipper: A Low-Latency Online Prediction Serv-
ing System

Clipper [61] addresses the challenge of improving the latency, throughput,
and accuracy of machine learning serving. The authors highlight the com-
plexity and reduced accuracy in deployment caused by the multitude of ma-
chine learning frameworks, each optimized for specific models or domains.
They argue that this tight coupling of applications to these frameworks hin-
ders the rapid and iterative development of new models and techniques. To
overcome this, Clipper introduces an intermediate abstraction layer, consist-
ing of two main components. Firstly, a model abstraction layer provides a
common prediction interface, enabling the easy introduction of new models
without modifying end-user applications. Each model is encapsulated within
a separate Docker container, communicating with Clipper through an RPC
mechanism for uniform interface and simplified deployment. Secondly, a
model selection layer, built on top of the model abstraction layer, aims to
enhance accuracy by dispatching inference queries to one or more models
and aggregating the results for final predictions. Additionally, to increase
throughput, the model abstraction layer employs dynamic adaptive batch-
ing to distribute inference requests across multiple model containers without
violating latency Service Level Objective (SLO) requirements. This archi-
tecture streamlines the deployment process, decoupling applications from
the variability and diversity of machine learning frameworks while improv-
ing overall performance and adaptability.

3.3 Dynamic Space-Time Scheduling for GPU In-
ference

Jain et al. [68] present a scheduler for ML prediction workloads that ad-
dresses the challenge of poorly utilized GPUs, using a combination of tem-
poral and spatial sharing. Their idea is to merge many small kernels from
disjoint DNN graphs into a small set of larger super kernels that together
are capable of saturating all resources on the GPU for a given timeslice.

3.4 Ebird: Elastic batch for improving responsive-
ness and throughput of deep learning services

Ebird [62] introduces a scheduling mechanism designed to enhance the re-
sponsiveness and throughput of machine learning (ML) inference tasks con-
ducted on GPUs. The authors identify issues with static batch sizes, com-
monly used to optimize GPU utilization, which result in prolonged latencies
during low-load periods as incoming requests wait for batch completion.

14

Chapter 3. Related Work

Conversely, during high-load periods, GPUs often remain underutilized due
to sequential batch processing, resulting in idle time during data transfer be-
tween CPU and GPU. To mitigate these challenges, Ebird advocates for elas-
tic batching, a dynamic approach leveraging CUDA streams to concurrently
process inference batches of varying sizes. Ebird maintains an in-memory
pool on the GPU to swiftly store incoming inference data upon arrival, en-
abling overlapping of data transfer and computation. A multi-granularity
inference engine then dispatches inference requests from this pool in diverse
batch sizes to available workers (CUDA streams), ensuring efficient resource
utilization and reduced latency across varying workload intensities.

3.5 Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up

Clockwork [66] highlights the prevalent issue of over-provisioning resources
in DNN serving systems to face the high variability of requests under tight
latency Sercive Level Objectives (SLO). The authors argue however that
many of these DNN models are based on deterministic computations that
make them very predictable. The variability in response times primarily
stems from internal system components across different layers of the stack,
exacerbated by best-effort techniques attempting to mitigate these varia-
tions. Clockwork’s approach therefore involves eliminating sources of unpre-
dictability within the system by centralizing configuration and scheduling
decisions across all layers. Through a central controller, Clockwork actively
manages memory allocation and de-allocation on worker nodes and restricts
concurrent execution to mitigate interference. While Clockwork successfully
meets most latency requirements, certain design choices lead to a trade-off
with hardware utilization and throughput.

3.6 GSLICE: Controlled Spatial Sharing of GPUs
for a Scalable Inference Platform

GSLICE [64] addresses the underutilization of modern GPUs by deep neural
network (DNN) workloads. The authors highlight that allocating additional
resources beyond a certain threshold, termed the kneepoint, yields minimal
benefits. To enhance GPU utilization, they propose spatially sharing GPUs
across multiple parallel workloads. While solutions like NVIDIA MPS allow
resource sharing, they lack adaptability to dynamically repartition resources
based on workload fluctuations without substantial downtimes. GSLICE
introduces a framework that extends NVIDIA MPS capabilities, enabling
dynamic resource partitioning. It achieves this by reallocating GPU re-
sources in the background to stand-by inference functions, ensuring rapid

15

Chapter 3. Related Work

activation with minimal downtime. Additionally, GSLICE implements an
adaptive batching mechanism to enhance throughput and GPU utilization
while maintaining latencies below Service Level Objectives (SLOs). To min-
imize data transfer time to GPU memory, GSLICE leverages GPU Direct
Memory Access (DMA) to directly scatter-gather data from network pack-
ets. Furthermore, it adopts a parameter sharing strategy to reduce memory
footprint and facilitate serving multiple models on a single GPU.

3.7 Irina: Accelerating DNN Inference with effi-
cient Online Scheduling

Most schedulers that aim to improve the throughput or hardware utilization
of inference requests assume predictable workload and present deteriorating
performance as the workload becomes unpredictable. Wu et al. [80] present
Irina, an inference scheduler whose primary goal is to minimize the aver-
age job completion time under unpredictable workload. In order to achieve
this, Irina uses three mechanisms. opportunistic batching groups inference
request to be handled by the same model into batches in order to utilize
available compute resources in the best possible way and reduce inference
delay. Online job stacking is used to collocate short and long running work-
loads onto the same GPU given that their peak memory consumption does
not exceed the available amount of memory and latency SLO are not vio-
lated. In this decision process Irina however doesn’t take into account the
mutual interference that both models may create towards each other. For
both methods, offline model profiling is conducted in order to gather the
necessary information. Lastly, since preemption is known to improve job
completion time and query response time, the framework uses dynamic job
preemption by modifying the underlying model computation graph. It intro-
duces so-called exit nodes between any two consecutive layers such that the
requests can be actively preempted after any operator. The exit nodes con-
tain information about the dynamic GPU memory allocation allowing it to
safely free it upon preemption. The downside however is that the framework
discards all intermediate computations up to the point of preemption. The
authors claim it is sometimes easier to simply redo all of the computations
rather than swapping intermediate results between the host and device.

3.8 Abacus: Enable Simultaneous DNN Services
Based on Deterministic Operator Overlap and
Precise Latency Prediction

Abacus, as detailed in the paper by Cui et al. [63], aims to enhance the effi-
ciency of DNN inference by improving throughput and latency. The primary

16

Chapter 3. Related Work

challenge identified by the authors is the unpredictable and unstable latency
associated with these requests, which complicates the effective collocation
of different DNN workloads on GPUs without violating their Quality of Ser-
vice (QoS) requirements. This unpredictability stems from the sensitivity
of requests to their input data and the random overlap of different opera-
tors/kernels due to their varying arrival times. To address this challenge,
Abacus introduces the concept of so-called operator groups to overlap oper-
ators and kernels from multiple user requests on a GPU within a scheduling
round. By leveraging offline profiling, the framework trains a multi-layer
perceptron capable of accurately predicting the latency of a given operator
group. During each scheduling round, Abacus selects the user request with
the least QoS headroom and adds its remaining operators to the group. It
continues this process, adding operators from other user requests, as long as
the QoS requirements can still be met. The authors assert that due to the
asynchronous execution of GPU operations alongside host operations, the
planning of an operator group for the next round can be seamlessly hidden
by the execution of the operator group in the previous round, incurring no
additional overhead.

3.9 INFaaS: Automated Model-less Inference Serv-
ing

The INFaaS framework [75] offers a solution to streamline the deployment of
machine learning (ML) models, optimize costs, and enhance resource utiliza-
tion. Recognizing the complexities involved in deploying ML applications
and the challenge of determining the optimal configuration for serving in-
ference requests, INFaaS introduces a model-less interface. This interface
allows users to register a model without the need for pre-defined configu-
rations. INFaaS automates the process of creating multiple variants of the
registered model and profiles them by adjusting parameters such as batch
size and underlying hardware. When submitting requests, users only need
to specify constraints, and INFaaS leverages an integer linear programming
model to optimize and select the most suitable variant for serving each
request. Furthermore, the framework dynamically scales up resources as
demand increases, ensuring efficient handling of peak loads. During peri-
ods of low demand, resources are shared across models to enhance resource
utilization.

17

Chapter 3. Related Work

3.10 Interference-Aware Scheduling for Inference
Serving

Mendoza et al. [72] emphasize that ML inference latency is highly impacted
by the collocation factor and the hardware executing the model. Profiling
each model-hardware combination for accurate latency predictions is im-
practical due to computational complexity. Instead of solely profiling various
collocation configurations across hardware types and fitting a model, the au-
thors propose learning a mapping between inference model characteristics
(e.g., CPU/GPU utilization, memory footprint, number of input/output
layers etc.), machine types, and resulting collocation latency degradation.
By incorporating machine types and model characteristics into the input,
they aim to exploit similarities in different collocation configurations across
models and hardware to enhance prediction accuracy. While the authors
demonstrate latency degradation improvements over least-load schedulers,
the paper lacks discussion on the scheduler’s impact on throughput and
resource utilization.

3.11 Serving DNNModels with Multi-Instance GPUs:
A case of the Reconfigurable Machine Schedul-
ing Problem

MIG-SERVING [77] explores the utilization of Multi-Instance GPU (MIG)
hardware support provided by NVIDIA to enhance the efficiency of A100
GPUs in serving deep neural network (DNN) inference requests, thereby im-
proving cost-effectiveness. It aims to optimize GPU partitioning into smaller
heterogeneous hardware instances and the scheduling of DNN services onto
these partitions. This optimization is conducted considering constraints
such as required Service Level Objectives (SLOs) and throughput rates.
The framework allows for partial reconfiguration of GPU instances and ap-
plies repartitioning seamlessly in response to changing requirements. The
optimization algorithm powering MIG-SERVING takes minutes to hours,
depending on the desired level of optimality, making frequent model or SLO
updates impractical. While the paper reports savings of up to 40% in the
number of GPUs required for certain workloads, it doesn’t consider the
difference in workspan latency among approaches. The baseline achieves
faster completion times within seconds, whereas various versions of MIG-
SERVING, aimed at more cost-efficient deployments, operate on the order
of minutes to hours due to the intensive optimization process. Furthermore,
according to the parper, the time to re-partition is in the order of minutes.
Underutilized resources in periods of low load cannot be temporarily re-
claimed and made available to services experiencing high load, leading to a

18

Chapter 3. Related Work

waste of resources. The framework, therefore, might prove less beneficial in
the presence of bursty load.

3.12 Morphling: Fast, Near-Optimal Auto-Configuration
for Cloud-Native Model Serving

Morphling [79] delves into the significant impact of system configuration,
such as GPU type, GPU memory, CPU cores, and hyperparameters like
batch size, on the throughput of many ML inference services. Unlike existing
deployment frameworks such as Clipper [61] or INFaaS [75], which primar-
ily focus on abstracting model heterogeneity into a common interface and
selecting the appropriate model variant for serving user requests, Morphling
takes a different approach. It introduces a framework that formulates the
system configuration tuning process as an optimization problem. Initially,
a base model is trained offline to capture general performance configuration
trends across a range of ML models. When registering a new inference ser-
vice, this base model serves as an initial regression model. Through online
fine-tuning using few-shot regression, Morphling dynamically adjusts and
refines the model to explore the configuration space and quickly converge to
near-optimal configurations.

3.13 GPUlet: Serving Heterogeneous Machine Learn-
ing Models on Multi-GPU Servers with Spatio-
Temporal Sharing

Choi et al. [60] propose novel strategies to address the limitations of tradi-
tional batching and temporal sharing techniques when utilizing GPUs for
ML inference services. They contend that unlike in training scenarios, where
data is readily available, inference data arrives at varying rates and times,
challenging efficient GPU utilization. Specifically, under strict Service Level
Objectives (SLOs), schedulers face a narrow window to aggregate requests
into batches, often resulting in suboptimal batch sizes that fail to fully lever-
age GPU compute resources. To overcome these challenges, the authors
advocate for exploiting hardware capabilities to spatially partition GPUs
into smaller virtual units called gpulets, offering finer-grained scheduling.
Leveraging offline profiled data and continuous monitoring of input arrival
rates, their framework dynamically assigns ML services to different gpulets.
Within each gpulet, temporal sharing is applied to overlap the buffering of
incoming requests from multiple services into batches and serving them dur-
ing subsequent time slots. Moreover, the scheduler continuously monitors
arrival rates across services, allowing it to not only adjust the number of ac-
tive GPUs required to meet all requests optimally but also to dynamically

19

Chapter 3. Related Work

repartition GPUs into different configurations.

3.14 AlpaServe: Statistical Multiplexing with Model
Parallelism for Deep Learning Serving

AlpaServe [71] employs model parallelism in ML serving systems to enhance
inference throughput and reduce latency, even for models that could theo-
retically fit on a single GPU. Despite the overhead associated with model
parallelism compared to exclusive GPU placement, the authors demonstrate
its efficacy in improving model serving, particularly during periods of low
and bursty load, limited device memory, or tight Service Level Objectives
(SLOs). In AlpaServe, for a given cluster of GPUs and a given set of mod-
els, the models are partitioned into smaller stages, with stages from different
models collocated on the same GPU. Compared to the exclusive placement
where requests are processed on a single GPU, AlpaServe adopts a pipelined
approach where requests are served by all GPUs of the cluster. Each cluster
maintains a queue of incoming requests, which are dispatched on a first-
come, first-served basis. During periods of high load for a particular model,
while others experience lower demand, the popular model can get a higher
share on the computational resources through statistical multiplexing of the
devices. However, it’s important to note that the advantages of statistically
multiplexing diminish as the load on all models increases or SLOs become
looser. In such scenarios, the overhead introduced by model parallelism be-
gins to outweigh its benefits, and exclusive placement of models on GPUs
resutls in better performance.

3.15 Clover: Toward Sustainable AI with Carbon-
Aware Machine Learning Inference

ML inference services currently represent a significant portion of cloud-
hosted applications and contribute substantially to the carbon footprint of
datacenters due to their high energy consumption. Addressing this issue,
Clover [70] focuses on reducing the carbon footprint of inference services by
intelligently creating a mixture of model variants on selected GPU partitions
to optimize for both carbon footprint and inference accuracy under Service
Level Objective (SLO) constraints. Clover leverages NVIDIA MIG to parti-
tion GPUs into smaller instances, enhancing resource utilization. Addition-
ally, it compromises a certain level of model accuracy to achieve better per-
formance and significant reductions in energy consumption. However, rather
than treating these approaches as separate dimensions, Clover approaches
them as a unified optimization problem. It incorporates lower-quality mod-
els to mitigate the interference introduced by spatially co-locating models

20

Chapter 3. Related Work

on the same GPU. This integrated approach enables Clover to reduce the
carbon footprint of ML inference services while ensuring SLA requirements
are met, with only minimal sacrifices in accuracy.

3.16 iGniter: Interference-Aware GPU Resource
Provisioning for Predictable DNN Inference
in the Cloud

iGniter [81] highlights the shortcomings of existing frameworks designed
to optimize GPU resource utilization using spatial co-location of inference
workloads without consideration for interference. The authors identify three
primary sources of interference that lead to performance degradation. Firstly,
the GPU scheduler introduces additional delays by scheduling kernels from
various workloads in a round-robin manner, with scheduling overhead in-
creasing as more workloads are co-located and kernels per workload in-
crease. Secondly, despite the ability of NVIDIA MPS to distribute streaming
multiprocessors among co-located workloads, contention in shared resources
such as the L2 cache are the main drivers of the active kernel execution
time. Lastly, performance deterioration occurs due to frequency reduction
as the GPU adjusts its frequency to manage increased workload demands
and maintain power limits. In response to these challenges, iGniter intro-
duces a lightweight analytical performance predictor that considers all three
interference sources to accurately predict the latencies of different workloads
under co-location scenarios. Leveraging this predictor, iGniter formulates a
cost-effective GPU resource provisioning strategy by heuristically assigning
workloads to GPUs that minimize interference overhead while ensuring to
not violate Service Level Objectives (SLOs). Notably, iGniter’s approach is
agnostic to GPU architecture, making it adaptable to clusters of heteroge-
neous GPUs.

3.17 Sheperd: Serving DNNs in the Wild

Zhang et al. [82] delve into the challenges of resource provisioning in the face
of unpredictable and bursty request streams. They highlight the difficulty
in effectively allocating resources due to the unpredictable request arrivals
in the short term. This often results in over-provisioning and underuti-
lization of resources. In response to this challenge, the authors introduce
Shepherd, a system designed to achieve high goodput, even in the presence
of unpredictable workloads, while ensuring scalability and efficient resource
utilization. Shepherd adopts a two-level scheduling framework to address
these goals. Firstly, a periodic planner groups individual request streams
into moderately-sized clusters, typically containing hundreds to thousands

21

Chapter 3. Related Work

of streams. This grouping enhances predictability, making resource provi-
sioning more manageable at the cluster-level scale. Secondly, an online serv-
ing scheduler schedules requests across streams within each serving group
independently. It temporarily shares the GPUs within each serving group
and favors to execute large batch sizes over smaller ones in order to max-
imize goodput. To correct for sub-optimal scheduling decisions made in
the past, the online scheduler uses software-level preemption to preempt a
current running batch in favor of a larger queued batch if their sizes differ
significantly. The authors prove that it is not possible to provide goodput
guarantees without using preemption when not knowing the future traffic
arrival patterns in advance. The 2-level scheduling approach adopted by
Sheperd has two advantages. It reduces the decision space that the online
serving phase has to operate in while at the same time still provisioning an
adequate number of streams and GPU workers to maximize utilization.

3.18 USHER: Holistic Interference Avoidance for
Resource Optimized ML Inference

Shubha et al. [76] present USHER, an end-to-end inference serving system
that optimizes GPU computation and memory utilization through spatial
multiplexing of resources in an interference-aware manner. USHER operates
in three stages. In the first stage, the framework estimates the resource and
memory requirements of a model. Instead of running the model on the GPU
and profiling it explicitly, the authors train regression models that leverage
the repetitive nature of a small set of operators in both convolution and
transformer-based models to estimate compute and memory requirements
at a kernel-level granularity. This approach allows them to classify models
as either compute-heavy, memory-heavy, or neither. In the second stage,
USHER uses these estimations to group models into moderate-sized clus-
ters, maximizing the likelihood of spatially co-locating compute-heavy and
memory-heavy models within a group. The authors found that within such
a group, replicating a model multiple times with smaller batch sizes across
multiple GPUs, even when a single GPU could handle the workload within
the latency SLO, can lead to a reduction in GPU fragmentation and thereby
an increase in GPU utilization. In the third stage, USHER aims to minimize
cache interference between co-located models. It does this by leveraging the
fact that models of the same architecture often share operators with similar
weight matrices. USHER merges the computation graphs of multiple deep
learning models so that matrix multiplications of different models are per-
formed simultaneously when a shared or similar weight matrix is present in
the cache. The authors report that this merging process results in negligible
loss of accuracy.

22

Chapter 4

Architecture

In this chapter, we will introduce our cluster scheduler infrastructure. Sec-
tion 4.1 provides a high-level overview of the architecture and its core con-
cepts. Section 4.2 provides the definition of classes that will be referenced
all over the chapter. Section 4.3 details the components operating at the
cluster level, while section 4.4 focuses on the node level of the cluster. Sec-
tion 4.5 will delve into the worker level of the cluster. We will discuss the
networking setup of the cluster in section 4.6, and conclude this chapter
with an overview of its current limitations in section 4.7.

4.1 Overview

Recent cluster schedulers targeting running ML inference on GPUs have fre-
quently introduced their own architectures, often comprising multiple tightly
coupled components. This tight integration makes it difficult to modify or
replace individual components, such as the placement policy, without affect-
ing the entire system. Consequently, extracting the placement policy from
one system and incorporating it into the architecture of another system is
non-trivial. As a result the performance comparison between systems is
tricky.

To address this issue, we propose a system that abstracts the core com-
ponents of schedulers for ML inference, offering a modular approach that
allows for the seamless integration of various placement policies. This chal-
lenge of inflexible architectures has also been recognized in the context of
cluster schedulers for deep learning training. For instance, the authors of
Blox [58] developed a modular toolkit to enable more flexible construction
and evaluation of deep learning training schedulers. Similarly, our system
aims to provide a more adaptable framework for ML inference, facilitating
easier experimentation and performance comparison across different place-
ment strategies.

23

Chapter 4. Architecture

Figure 4.1: Architecture Overview

The resulting architecture can be seen in figure 4.1. There are 3 main
levels in the system architecture:

1. Cluster Level: At the very top level there is a cluster. A cluster
always consists of one Cluster Controller and at least one node.
The Cluster Controller is an entity that is responsible for coordi-
nating the work across all nodes and exposing an interface for clients
to submit requests to.

2. Node Level: At the mid level there are nodes. There is one node per
machine, and a single node always consists of one Node Controller

and at least one GPU attached to it. Each GPU can have multiple
workers assigned to it. The job of the Node Controller is to coordi-
nate all workers and expose a communication interface to the Cluster
Controller.

3. Worker Level: At the bottom level there are workers. A Worker

is always assigned to one GPU. It is responsible for launching the
inference requests on the GPU. Multiple workers can be attached to
the same GPU and they live on the same machine as their managing
Node Controller.

The architecture is build up in a way that it can run both on a single
machine or distributed across multiple machines, on premise or in the cloud.
There are however two restrictions, that we will list below:

24

Chapter 4. Architecture

1. All functionality related to the Cluster Controller has to run on
the same machine as its component will use shared memory to com-
municate with each other. We will share more details in section 4.3.

2. All functionality related to the Node Controller has to run on the
same machine as again its components will rely on shared memory to
communicate with each other.

With the above constraints introduced, the following are all valid con-
stellations.

• Single Machine Scenario: We have a cluster that consists of one
node with n ≥ 1 GPUs attached to it. There is one Cluster Controller

and one Node Controller that will both live on the same machine.

• Multi Machine Scenario: We have a cluster that consists of one
machine running the Cluster Controller and m ≥ 1 additional ma-
chines each running a node. Each node i can again have ni ≥ 1 GPUs
attached to it.

The whole system is implemented in Python using PyTorch as backend
for running the inference and the implementation is available on https:

//github.com/eth-easl/orion_dev.

We will next spend an individual section for each of the three levels and
explain its components in more detail. Until now we have highlighted the
main entities Cluster Controller, Node Controller and Worker. From
now on we will no longer explicitly highlight them for readability reasons,
but will always refer to them as cluster controller, node controller or worker
respectively.

4.2 Class Definitions

In this section, we introduce several key classes that will be referenced re-
peatedly in the subsequent sections. The class definitions in Listing 4.1
provide simplified representations of their actual implementations but are
sufficient to understand the general functionality of the system. Further
details about these classes will not be provided at this point. Instead, they
will become clearer in their respective contexts throughout the document.

4.3 Cluster Level

This section is dedicated to explain the main components of the cluster
level. We will again start by first providing an overview on the high level
task of each component, how they interact with each other and then focus

25

https://github.com/eth-easl/orion_dev
https://github.com/eth-easl/orion_dev

Chapter 4. Architecture

1 class Model:

2 model_name: str

3 model_type: str

4 target_rps: int

5 slo: int

6

7 class Client:

8 model: Model

9

10 class Node:

11 uid: str

12 ip: str

13 port: str

14

15 class GPU:

16 uid: str

17 local_id: int

18 gpu_type: str

19 memory: int

20 sm_count: int

21 node: Node

22

23 class ModelPlacement:

24 model: Model

25 gpu: GPU

26 batch_size: int

27 mps_share: Optional[float]

Listing 4.1: Domain Model of our ML inference cluster

more closely on each of them individually. Figure 4.1 provides the necessary
overview.

• Cluster Controller Process: The main orchestrator of the cluster,
responsible for coordinating all components as outlined in Listing 4.2.
This process operates independently, ensuring all subsystems function
cohesively. Further details are provided in Section 4.3.1

• Model Placement Policy: Integrated within the cluster controller
process, this component executes the model placement policy. Its in-
terface is designed to be modular, allowing easy swapping of placement
algorithms. Section 4.3.2 delves deeper into its implementation.

• Router: The router handles the routing and load-balancing of client-
submitted inference requests, directing them to the appropriate nodes
for processing. A single router instance runs independently as its own
process, as described in Section 4.3.3.

• Result Server: Acting as a proxy, the result server forwards inference
results from the workers back to the clients. It operates as a standalone

26

Chapter 4. Architecture

process, ensuring that communication between workers and clients is
streamlined.

• Cluster Store: A shared memory-based database that holds the state
of the entire cluster. This allows the cluster controller process, router,
and result server to share and access overall information efficiently.

• Client: These entities generate load for the cluster by submitting
requests. They operate as independent processes on the same machine
as the other cluster components. A detailed discussion of their current
state and potential improvements is provided in Section 4.3.6.

• Benchmark: This component runs at the final stage, just before
resource cleanup, collecting and aggregating performance data across
the cluster. It provides key metrics for evaluation and debugging and
operates as part of the cluster controller process.

4.3.1 Cluster Controller Process

The cluster controller process serves as the core and entry point of the
cluster. It is responsible for launching all cluster-level components, ensuring
their coordination and communication, and terminating them upon comple-
tion. Listing 4.2 outlines the primary sequence of actions undertaken by this
process.

The algorithm takes as input an array of clients and an array of nodes.
We refer the reader back to section 4.2 for the definition of the Client and
Node class.

The algorithm begins by initializing the cluster store in line 5, which
holds shared information accessible to all cluster-level processes. In line 6
the cluster controller gathers information on all GPUs in the cluster. Using
gRPC, it contacts each node to retrieve information on the GPUs attached
to it, including the GPU’s local identifier, type, memory capacity, and the
number of Streaming Multiprocessors (SMs). This data is stored in the
cluster store. It is important to note that the nodes must be operational by
the time the cluster controller contacts them.

In lines 8 to 11, the algorithm proceeds by creating a shared client sub-
mission queue for all clients to submit requests to, and a client result queue
for each client to receive the results of its requests.

Subsequently, the cluster controller invokes the model placement policy
in line 13, providing it with information on the clients to be served. The
policy returns a mapping of models to the GPUs that will host them, along
with corresponding batch sizes. The internal logic of the placement policy is
abstracted from the caller, enabling the easy replacement of any policy that
adheres to the interface. After receiving the model placement mapping, the
cluster controller shares the relevant information with each node over gRPC

27

Chapter 4. Architecture

1 def run_cluster_controller(

2 clients: list[Client],

3 nodes: list[Node]

4):

5 cluster_state = init_cluster_state ()

6 gpus = fetch_gpus_from_nodes(nodes)

7

8 client_sub_queue = shared_queue ()

9 client_res_queues = map()

10 for c in clients:

11 client_res_queues[c] = shared_queue ()

12

13 model_placement = run_placement_policy(clients , gpus)

14 send_placement_to_all_nodes(nodes , model_placement)

15

16 start_router(client_sub_queue , model_placement , nodes)

17 start_result_server(client_res_queues)

18

19 for c in clients:

20 start_client_sender(c, client_sub_queue)

21 start_client_receiver(c, client_res_queues[c])

22

23 # wait for client sender and receivers to finsih

24 client_senders.join()

25 client_receivers.join()

26

27 # collect metrics an clean up

28 run_benchmark ()

29 clean_up_all_resources ()

Listing 4.2: Cluster Controller Process

in line 14. The nodes operate independently and have no awareness of each
other’s presence.

In lines 16 and 17 the cluster controller then starts the result server
and the router, granting them access to the client result queues and client
submission queue respectively.

Once the cluster is fully set up and running, the client processes are
launched in lines 19 to 21, each as an individual sender and receiver process,
and the serving of requests will start. After all requests have been served,
the benchmark module is launched to collect metrics across the whole cluster
in line 28 and finally all resources are cleaned up.

4.3.2 Model Placement Policy

This subsection will provide more details on the model placement policy
module and its abstraction. The interface that each policy needs to imple-
ment is provided below:

28

Chapter 4. Architecture

1 run_placement_policy(clients: list[Client], gpus: list[GPU])

-> list[ModelPlacement]

We refer the reader back to section 4.2 for the corresponding class def-
initions of Client, GPU, and ModelPlacement. For each client, the most
important attributes are its model name, the target request submission rate
target rps (in requests per second), and its Service Level Objective slo,
specified in milliseconds.

A GPU consists of a universal uid and a local id corresponding to
its local identifier on its respective machine. The node refers to the node
object that the GPU is attached to. As a consequence, all GPUs on the
same machine share the same node.uid. A GPU can thus be uniquely
identified either by its global uid or by the tuple (node.uid, local id).
This abstraction gives the placement policy full visibility into the cluster’s
topology. While the placement policies evaluated in this work assume models
that can be served by a single GPU, future work may explore scenarios where
larger models are split across multiple GPUs. In such cases, it is preferable
to allocate models across GPUs within the same node. This abstraction
should not require any changes to also support these cases.

The placement policy is required to return a list of ModelPlacement ob-
jects. A model placement specifies that a particular model will be served on
a specific gpu, with a designated batch size and an optional mps share.
An mps share of 50% for example indicates that the model should only have
access to 50% of all the Streaming Multiprocessors (SMs) on the correspond-
ing GPU. It is important to note that a model may be served on multiple
GPUs, with different batch sizes and resource allocations. In such cases, the
policy returns a separate ModelPlacement object for each GPU. From this
point forward, we refer to these individual placements as model replicas.

We will not focus on any specific implementation of a placement policy
here, but will delay this to chapter 5.

4.3.3 Router

We are next going to focus on the router in more detail, a crucial component
of the overall scheduler system. The router’s task consist in distributing
the clients’ inference requests among all the corresponding model replicas.
To achieve this, the router is provided with the client submission queue
client sub queue from which it can dequeue the client requests, the model
placement that contains a mapping from each model to the GPUs serving
it and the addresses of all the nodes in the cluster. The functionality of the
router is provided by listing 4.3.

The router is responsible for grouping the individual requests into batches
before sending them to the nodes. The desired batch size for each model can
differ between each of the replicas and is provided by the model placements.

29

Chapter 4. Architecture

1 def run_router(

2 client_sub_queue: shared_queue ,

3 model_placement: list[ModelPlacement],

4 nodes: list[Node]

5) -> None:

6 cur_replica = get_first_replica_per_model(model_placement)

7 batch_per_model = map()

8 batch_timeout = map()

9

10 while not interrupted:

11 req = get_next_request(client_sub_queue)

12

13 if req.model in batch_per_model:

14 batch_per_model[req.model].add(req)

15 else:

16 batch_per_model[req.model] = [req]

17 batch_timeout[req.model] = now() + MAX_WAIT_TIME

18

19 if batch_is_full () or timeout_reached ():

20 send_batch_to_node(cur_replica[req.model].node)

21 batch_per_model.pop(req.model)

22 cur_replica[req.model] =

round_robin_to_next_replica ()

23

24 send_remaining_open_batches_to_nodes ()

Listing 4.3: Router

The router will round-robin the batches for each model across its replicas.
To do so, it maintains three important maps:

1. cur replica: For each model the router is always building at most one
batch at a time designated to a specific replica. The replica under
current consideration is stored by the router in the cur replica map.

2. batch per model: This map stores a list of the requests part of each
batch that is being constructed.

3. batch timeout: To prevent that requests are being held up at the
router for too long while waiting to reach their target batch size, the
router maintains a timeout for each batch after which it will at the
latest be send off to its corresponding worker. A similar behavior is
adopted by works like Ebird [62], Clockwork [66], Irina [80], iGniter
[81] and the Triton Inference sever [55].

The router continuously polls the client sub queue for incoming re-
quests. For each request, the router, in line 13, checks whether a batch is
currently being constructed. If a batch is in progress, the request is added to
it. If not, the router initializes a new batch and sets a timeout. This timeout

30

Chapter 4. Architecture

is determined by the user-configurable constant MAX WAIT TIME, which we
have set to 100ms. This value, aligns to our understanding with the default
configuration used in iGniter [55, 81]. Even though this constant may seem
marginal, we will show in chapter 6 that its value can have a significant
impact on the overall performance of the system.

After adding the request to the batch, the router will evaluate whether
the current batch has reached its desired size or if its timeout has expired in
line 19. If either condition is met, the batch is sent to the node hosting the
corresponding model replica using gRPC. For more details on the networking
setup, we refer the reader to Section 4.6. Once the batch is sent, it is marked
as resolved in line 21, and the router proceeds to the next model replica in
a round-robin manner in line 22. This ensures that each replica handles a
portion of the total load proportional to its designated batch size.

In the event of an interruption or termination, the router, in line 24,
sends any remaining batches, regardless of whether they have reached the
desired size or their timeouts have been triggered.

Synchronous vs Asynchronous Router

The send batch to node function is responsible for transmitting a list of
requests over the network to the node. The overhead of network transmis-
sion primarily depends on the amount of data being sent and the available
bandwidth to the router. If this transmission were handled synchronously,
the router would be blocked for the entire duration of the transmission, pre-
venting it from processing requests in the client sub queue. This could
significantly reduce the router’s throughput. To mitigate this issue, we im-
plemented the router asynchronously using asynchronous gRPC [39], aiming
to hide the network overhead and preventing the router from becoming a
bottleneck in the cluster.

The router operates as a single Python process with multiple Python
coroutines [37]. When a coroutine asynchronously invokes the send batch to node

function, it is blocked during the network request. However, instead of
halting the entire router process, the coroutine yields control back to the
event loop. This allows the event loop to schedule another coroutine in the
meantime and continue constructing batches while the network transmission
proceeds in the background.

The number of coroutines can be set by the user and should be carefully
selected based on the number of model replicas being served. As a general
guideline, the number of coroutines should be at least equal to the number
of model replicas. If the number of coroutines is fewer than the number of
replicas, all coroutines may become blocked while waiting for their network
transmissions to complete, causing the router to stall until the first coroutine
finishes, delaying further batch construction.

31

Chapter 4. Architecture

4.3.4 Result Server

The result server is a gRPC server that is a proxy for forwarding the inference
results from the workers back to the clients. The workers at the node level
have no knowledge on how to reach the clients. On the contrary the result
server is given a list of client result queues client res queues. For each
client it uses a dedicated queue to forward its results. Our system currently
has one result server running for the entire cluster, but it may easily be
replicated multiple times.

4.3.5 Cluster Store

The Cluster Store functions as a shared memory-based database, accessible
to all components at the cluster level. Its primary role is to store informa-
tion about the overall state of the cluster, such as GPU topology, model
placements, and client data. It is implemented using Python Managers [40].
Due to the inherent performance overhead associated with accessing shared
memory via a Python Manager, the store is designed to hold data that re-
mains constant over time and accessed infrequently. It is not intended as
a communication channel between processes, but rather as a repository for
more static, less frequently modified data.

4.3.6 Clients

We will next focus on the client setup as it stands at the time of writing.
Several simplifications have been made during the course of this work due
to time constraints. While this setup is functional, it is far from ideal and
will require careful redesign in the future. For each simplification, we will
provide background context and propose improvements for future iterations.

Clients are the entities responsible for submitting load to the cluster. A
client is characterized by three key properties:

• a Model for which the client submits requests,

• a Submission Rate that defines the target number of requests the
client submits per second, and

• a Service Level Objective (SLO) that specifies the upper bound
on the end-to-end (e2e) latency a request may take to be considered
valid.

A client is implemented as two separate processes running in parallel. A
sender process handles submitting requests to the cluster, while a receiver
process waits for the results of these requests to be returned. We have
decided to implement each task as a separate process to avoid that they
interfere with each other.

32

Chapter 4. Architecture

Client Sender

1 def run_client(

2 client_id: int ,

3 client_sub_queue: shared_queue ,

4 model: Model ,

5 num_requests: int ,

6 rps: int

7) -> None:

8 # make random generator deterministic across runs

9 set_seed ()

10

11 for i = 1 to num_requests:

12 req_id = generate_unique_id ()

13 input_shape = get_input_shape(model) # simplification

14 client_sub_queue.put(

15 req_id ,

16 input_shape ,

17 client_id ,

18 model

19)

20

21 sleep_time = random_sample_from_exp (1 / rps)

22 sleep(sleep_time)

Listing 4.4: Client Sender

The functionality of the client sender is illustrated in Listing 4.4. The
client is instructed to submit a total number of requests num requests, at a
target submission rate rps. For each request, a unique identifier is generated,
allowing the request to be tracked and identified at any point in the cluster.
The sender then queries the input shape required for the given model. For
instance, when performing object recognition with the resnet50 model [50],
the input shape would be 3 × 224 × 224. It is important to note that the
client only submits the input shape to the queue when sending the request
to the cluster. The actual input data is generated at the worker node.

This is a key simplification made in this work, motivated by bottlenecks
that we have observed in gRPC when transmitting large message sizes. We
will provide further details on this topic in Section 4.6. After submitting
the request to the queue, the sender sleeps for a duration sampled from
an exponential distribution [8]. Note that the client sender does not wait
for the result of its request to return before sending the next request, thus
operating in an open system configuration.

It is important to distinguish between the target request submission
rate (the number of requests per second the client is supposed to submit)
and the achieved request submission rate (the number of requests per
second the client actually submits). Ideally, the achieved request rate would

33

Chapter 4. Architecture

match the target rate. However, in practice, the achieved rate is lower due to
additional work being performed during each iteration, beyond just sleeping.

Table 4.1 compares the average achieved request submission rate mea-
sured over a 10-second period with the target submission rate. This ex-
periment used four clients, all sharing the same req sub queue, and one
router process. The measurements were conducted on a n1-standard-16

machine [10] on the Google Cloud Platform, utilizing the Intel Skylake

CPU platform. The table shows that in all 4 cases, the achieved submis-
sion rate is lower than the target submission rate. In order to increase the
achieved submission rate, we can simply increase the target submission rate.
While the achieved request submission rate will be our primary focus, we
will always clarify which metric is being referenced.

Target RPS

Client ID 400 800 1200 1600

0 368 711 1022 1294
1 368 713 1022 1290
2 368 713 1022 1296
3 368 713 1022 1296

Table 4.1: Target request submission rate in request per second vs average
achieved request submission rate (rounded to nearest integer) for 4 clients
and one router over 10 seconds. Measurements have been conducted on a
n1-standard-16 machine with the Intel Skylake CPU platform in Google
Cloud.

Client Receiver

The functionality of the client receiver is very simple. It keeps polling its
dedicated client res queue and saves the timestamp of the arrivals.

Clients running on same machine as cluster-level components

In our current setup, clients submit their requests and receive correspond-
ing results using shared queues. This configuration is possible because the
clients, the router, and the result server are all running on the same ma-
chine, allowing them to share the queues. However, in a realistic deployment,
clients would run on separate machines outside the cluster, communicating
with the cluster over the network. The simplified setup was chosen to quickly
develop a functional system that could be used to evaluate the impact of
different placement policies on overall system performance. Due to time
constraints, we were unable to decouple the clients from the cluster and run
them as separate entities on different machines.

34

Chapter 4. Architecture

This simplification should be addressed in future work. For request sub-
mission, the solution is relatively straightforward. The router could become
the entry point to the cluster by hosting a server that exposes an endpoint
for clients to submit requests. Assuming this endpoint is accessible from
outside the cluster, the client sender processes could easily run on a sepa-
rate machine. However, handling the client receiver presents two potential
solutions, each with its own advantages and disadvantages:

1. Using the Result Server as a Proxy: One option is to retain
the result server and use it as a proxy to forward results from the
workers to the clients. The advantage of this approach is that the result
server remains within the cluster, maintaining access to the cluster
store, which contains relevant information about the clients. This
enables the result server to know how to contact individual clients.
Additionally, the result server could extract and store performance
data at the cluster level, such as request latencies, to monitor how long
a request spends at the node or how long the actual inference takes.
This feedback data could be valuable for the router when deciding
where to send future batches. For instance, if the requests for a model
on a particular worker take significantly longer than expected, this
could indicate interference or an overloaded worker. The router could
then dynamically load balance future requests to other workers until
the situation stabilizes.

This feedback could also inform the placement policy. Currently, the
placement policy is executed only once at the beginning and remains
static. Future work could explore a dynamic placement policy that
runs periodically and incorporates feedback from the workers. For
example, more replicas could be assigned to a model that struggles
to keep up with demand, or replicas could be removed from models
that are over-allocated. Systems like GSLICE [64] and iGniter [81]
already use feedback data to make adjustments to model placement.
The primary disadvantage of this solution is that it introduces an-
other network hop in the end-to-end lifecycle of a request, adding
additional network overhead. Another disadvantage is that the result
server becomes a single point of failure. In the case of a failure at the
cluster-level the clients have no way of retrieving their results.

2. Direct communication between workers and clients: Another
approach is to have the workers send the results directly to the clients.
As described in more detail in Section 4.5, each model replica is man-
aged by a dedicated worker. This worker could be extended to in-
clude information about the clients, enabling direct communication
with them. This method would likely provide the fastest way to return
results from workers to clients, and since each worker is responsible for

35

Chapter 4. Architecture

its own results, there would be less risk of the result server becoming
a bottleneck. However, this approach has some drawbacks. First, it
would eliminate the valuable feedback data that could otherwise be
shared with cluster-level components, as described earlier. Second, it
introduces the concern of sharing more client-related information with
workers than might be ideal.

4.3.7 Benchmark

The Benchmark component is not essential for the core functionality of the
system but serves as a performance analysis tool. It runs as part of the
cluster controller process before termination, after all client sender and re-
ceiver processes have terminated. As described earlier in subsection 4.3.6,
client senders generate a unique identifier for each request they submit. This
allows all components across the cluster that participate in serving the re-
quest to log timestamps for each stage of the process. After all requests have
been processed, the benchmark component’s role is to gather the timestamps
recorded for each request by all the components in the cluster.

For components operating at the cluster level, a shared queue is used
to send the timestamps to the benchmark. To collect the timestamps from
the node and worker levels, the benchmark component communicates with
each node controller over the network. The node controller is responsible for
gathering the timestamps from all its workers before sending the data back
to the benchmark. Using the unique request ids, the benchmark can merge
the timestamps with relevant metadata, creating a comprehensive timeline
for each request. For example metadata might include the batch id that a
particular request was part of.

Once all timestamps are collected and merged, the benchmark provides
a detailed performance overview of the cluster. This overview can be gen-
erated at varying levels of granularity, offering insights into the system’s
behavior and helping identify any performance bottlenecks or inefficiencies
across the cluster.

36

Chapter 4. Architecture

4.4 Node Level

In this section, we will focus on the role of nodes within the overall cluster
topology and break down their key components.

4.4.1 Node Controller

Figure 4.2: Node Controller

Figure 4.2 provides an overview of the node controller. As mentioned
earlier in Section 4.1, the cluster is composed of at least one node, and
each node is equipped with at least one GPU. Nodes can be viewed as local
clusters themselves, each exposing an endpoint to receive and schedule work
across its GPUs. The router introduced in Section 4.3.3 is the only client
interacting with the node. For communication between the router and the
node, each node runs a gRPC server [38], that we will refer to as the Node
Controller from now on. Listing 4.5 shows the basic structure of this gRPC
server, which is designed with a pool of threads to process multiple requests
concurrently. The size of this thread pool can be configured by the user.
Below, we will explore each of the server’s endpoints in more detail.

Collecting GPU information

The getGPUInfo endpoint is used to collect details about the GPUs
attached to a node. Listing 4.6 provides the pseudo code for this endpoint.
As described in Subsection 4.3.1, the cluster controller needs this information
before running the model placement policy. For each GPU attached to the
node, the endpoint will create a GPU object as it was defined in section 4.2
and send it back to the cluster controller. The cluster controller will add
the corresponding node id to it. If the node has n GPUs attached to it,

37

Chapter 4. Architecture

1 class NodeControllerGrpcServer ():

2 def __init__(self):

3 self.metric_queue = init_shared_queue ()

4 self.metrics = dict()

5 self.workers = dict()

6

7 def getGPUInfo(self):

8 # return information on all attached GPUs

9

10 def placeModels(self , replicas: list[ModelPlacement]):

11 # Update model placement and start workers

12

13 def serveBatch(self , request: InferenceBatch):

14 # forward request to worker

15

16 def getRequestMetrics(self):

17 # return collected metrics for all requests

Listing 4.5: NodeController gRPC Server

the local id will range from 0 to n − 1. The system is flexible enough to
handle nodes with different types of GPUs.

Updating the model placement

Once the model placement policy has been executed by the cluster con-
troller, it informs each node about the model replicas they will be handling.
The placeModels endpoint is used for this purpose, as shown in Listing
4.7. This endpoint initializes new workers for each model replica and as-
signs them to a specific GPU. Additionally, the workers are provided with a
shared queue for receiving inference requests and the node controller’s shared
queue for sending metrics back to it. The mapping from replicas to worker
is maintained by the node controller in the self.workers map. Section 4.5
contains further information on the implementation of the workers.

Forwarding an inference batch

Once a request is submitted by a client, the router consolidates these
requests into batches and forwards them to the nodes. The serveBatch

endpoint, illustrated in Listing 4.8, serves as the entry point for process-
ing these batches. Upon receiving a batch, the node controller records the
timestamp and places the request in the appropriate worker’s queue. The
endpoint does not wait for the results of these requests but purely acts as a
proxy. Prior to actually forwarding the request into the worker’s queue, the
endpoint first sleeps for some specific amount of time. We refer the reader
to section 4.6 for the reasons and details behind this.

38

Chapter 4. Architecture

1 class NodeControllerGrpcServer ():

2 ...

3

4 def getGPUInfo(self) -> list[GPU]:

5 gpus = []

6 for each gpu attached to the node:

7 gpus.append(

8 GPU(

9 gpu.uid ,

10 gpu.local_id ,

11 gpu.gpu_type ,

12 gpu.memory ,

13 gpu.sm_count

14)

15)

16 return gpus

Listing 4.6: getGPUInfo gRPC endpoint

1 class NodeControllerGrpcServer ():

2 ...

3

4 def placeModels(self , replicas: list[ModelPlacement]):

5 for replica in replicas:

6 input_queue = init_shared_queue ()

7 worker = start_new_worker(

8 replica ,

9 input_queue ,

10 self.metric_queue

11)

12 self.workers[replica.id] = worker

Listing 4.7: placeModels gRPC endpoint

Collecting Request Metrics

After all requests have been served, the getRequestMetrics endpoint,
shown in Listing 4.9, is used by the Benchmark module to gather all collected
metrics about the requests. The endpoint first initiates the termination of
all workers on the node. As part of this termination process, the workers
will communicate all their collected metrics back to the node controller using
the self.metrics queue that they were provided with upon initialization.
Once all workers have terminated, the endpoint will then first gather the
metrics of all the workers and send them back to the benchmark using
gRPC streaming. Finally it streams its own collected metrics back to the
benchmark module.

39

Chapter 4. Architecture

1 class NodeControllerGrpcServer ():

2 ...

3

4 def serveBatch(self , request: InferenceBatch):

5 # sleep for some time -> see section 4.6

6

7 # forward request to worker input queue

8 record_request_timestamp(self.metrics)

9 worker = self.workers[request.replica_id]

10 worker.input_queue.put(request)

Listing 4.8: serveBatch gRPC endpoint

1 class NodeControllerGrpcServer ():

2 ...

3

4 def getRequestMetrics(self):

5 terminate_all_workers(self.workers)

6

7 # collect worker metrics

8 worker_metrics = dict()

9 while not self.metrics_queue.empty():

10 worker_id , w_metrics = self.metrics_queue ().get()

11 worker_metrics[worker_id] = w_metrics

12

13 # stream worker metrics back

14 for w_id , w_metrics in worker_metrics:

15 stream_metrics_back_to_benchmark(w_metrics)

16

17 # stream node controller metrics back

18 stream_metrics_back_to_benchmark(self.metrics)

Listing 4.9: getRequestMetrics gRPC endpoint

4.5 Worker Level

This section discusses the worker level of our ML inference cluster, providing
an overview of its components, their interactions, and a detailed analysis of
their functionality.

4.5.1 Overview

Figure 4.3 presents a detailed view of an individual worker. Each worker
comprises two parallel processes: a Dispatcher and a Result Processor.
These processes are launched by the node controller server through the
placeModel endpoint (Section 4.4.1). The dispatcher is responsible for serv-
ing requests on the GPU, while the result processor handles the communi-
cation of results back to the result server at the cluster level (Section 4.3.4).

40

Chapter 4. Architecture

Figure 4.3: Worker

Both processes interact via a shared queue, enabling non-blocking opera-
tions. While the dispatcher submits results to the queue without waiting
for the network transmission of the results to complete, the result processor
manages the actual transmission asynchronously. The dispatcher can in the
meantime proceed to serving the next request in the queue. We now explore
the functionality of each process in greater detail.

4.5.2 Dispatcher

The dispatcher is responsible for performing inference tasks on the as-
signed GPU and its main sequence of action is provided by Listing 4.10.
Key information for the dispatcher is encapsulated in the replica object:

• replica.gpu.local id is the identifier of the GPU the dispatcher will
use

• replica.mps share is an optional setting that limits the number of
Streaming Multiprocessors (SMs) available to the dispatcher

• replica.model is the model assigned to the dispatcher for inference

As each dispatcher serves a single model, the model is loaded onto the
GPU once at the beginning. As long as the dispatcher remains active, it
polls the input queue for new requests. For each request, it generates input
data based on the input shape provided, transfers the data to the GPU,
executes the inference, and places the result onto the result queue for
further processing by the result processor. The dispatcher then continues
to the next request without waiting for the result to be transmitted, thus
overlapping computation with result transmission.

Requests in the input queue arrive in batches, and are built by the
router at the cluster level. The dispatcher processes these batches sequen-
tially, without further grouping them into even larger batches. For each
request, the dispatcher collects two metrics: the time at which a batch was
dequeued and the inference latency. The former is used to capture the total

41

Chapter 4. Architecture

1 def run_dispatcher(

2 replica: ModelPlacement ,

3 input_queue ,

4 result_queue ,

5 metrics_queue

6):

7 metrics = dict()

8

9 # set the optional MPS share

10 if replica.mps_share is set:

11 set_mps_share(replica.mps_share)

12

13 model = load_model_to_gpu(replica.model ,

replica.gpu.local_id)

14

15 while not terminated:

16 req = get_next_request(input_queue)

17 record_request_timestamp(metrics)

18

19 # generate data from input shape -> simplification

20 input_data = get_data(replica.model , req.input_shape)

21

22 # copying and computing can be done in sep streams

23 move_data_to_gpu(input_data , req.gpu.local_id)

24 result = run_inference(model , input_data)

25 record_inference_latency(metrics)

26

27 # put result on queue and continue with next batch

28 result_queue.put(result)

29

30 # upon termination , send metrics to node controller

31 metrics_queue.put(metrics)

Listing 4.10: Dispatcher process

time a request spends at the worker level, while the latter isolates the du-
ration of the actual inference process, including only the data transfer from
host to device, the computation on the device, and the transfer of the result
back to the host. Whenever we talk about the inference latency we refer to
the latter on.

Upon termination, the dispatcher sends all collected metrics back to the
node controller.

Loading the model to the GPU

So far we have remained pretty vague on how a trained model ends up on
the GPU of a worker. The load model to gpu function takes care of this.
Rather than transmitting the trained weights from the client all the way to
the worker, a Model object, contained in the replica.model field, is sent.

42

Chapter 4. Architecture

This object includes the model name, which the worker uses to download the
model and load it onto the GPU. The models used in our evaluation include
vision models for object recognition from PyTorch [50] and language models
for sentence classification from HuggingFace [16]. Further details about the
models are provided in Section 6.1.2. The domain model can however easily
be extended to include any API from which a model should be downloaded
including private and closed source models.

Data Generation

Our observations, detailed in Section 4.6, reveal significant overhead when
transmitting input data with each request from the client to the worker. This
overhead is particularly pronounced with gRPC, especially when handling
larger data volumes. Many of the models used in our evaluation are vision
models with an input shape of 3 × 224 × 224, resulting in a single request
input size of 4 · 3 · 224 · 224 = 602, 122 bytes (≈ 0.6 MB).

As batch sizes increase, the (de)serialization of the gRPC protocol buffer
increasingly dominates the overall transmission latency, thereby limiting sys-
tem throughput. Our measurements indicate that this overhead is specific to
gRPC. Transmitting equivalent data volumes over raw TCP sockets yielded
superior performance. Due to time constraints preventing a complete redefi-
nition of the client-to-worker networking setup, we implemented a temporary
solution: transmitting only the input shapes over the network and gener-
ating the actual data at the workers. Section 4.6 explains our approach to
modeling network latency as if data were transmitted via raw TCP sockets,
approximating a realistic setup. Future work should address this limitation
by redefining the architecture to accommodate client-provided input data.

With data generation occurring at the workers, we must ensure efficiency
to prevent domination of request processing time. Ideally, input data should
be immediately available upon request dequeuing. Although each model
replica has a desired batch size (accessible via replica.batch size), we
cannot assume that all batches dequeued from the input queue will match
this size. As explained in Section 4.3.3, the router employs a MAX WAIT TIME

constant, after which the batch is dispatched to the node regardless of
whether the desired batch size has been attained. To generate inputs with
dynamic batch sizes, we pre-allocate a large batch (e.g., 512×3×224×224)
in pinned memory [47]. Any call to the get data function requesting a
batch of shape b × 3 × 224 × 224 returns the first b · 4 · 3 · 224 · 224 bytes
from this pre-allocated tensor. We evaluated alternative options, such as
regenerating random batches of the desired shape from scratch, but found
them to introduce excessive overhead.

43

Chapter 4. Architecture

Setting the Multi-Process Service (MPS) Share

This section details the implications of running NVIDIA’s Multi-Process Ser-
vice (MPS) [24], particularly focusing on the effects of setting the replica.mps share.
While this functionality is specific to NVIDIA GPUs, our system is designed
to be easily extensible to support other GPU architectures.

NVIDIA’s MPS is a technology enabling concurrent sharing of a sin-
gle GPU by multiple CUDA applications, primarily aimed at enhancing
GPU utilization and overall system efficiency. From the Volta architecture
onwards, NVIDIA introduced the capability to create soft partitions of the
GPU by constraining the number of Streaming Multiprocessors (SMs) avail-
able to each process. It is important to note that while SM allocation can
be constrained, underlying resources such as the L2 cache remain shared
among all processes, distinguishing this approach from NVIDIA’s Multi-
Instance GPU (MIG) [23].

Our dispatchers operate with the MPS daemon running by default, fa-
cilitating concurrent GPU usage by multiple processes. Additionally, if the
model placement policy requires constraining the number of SMs for each
worker, it can do so by setting the replica.mps share, a technique em-
ployed in works such as iGniter [81]. In such cases, the dispatcher process
sets the CUDA MPS ACTIVE THREAD PERCENTAGE environment variable to limit
available SMs. If this variable is not set, all SMs remain accessible to all
processes. It is crucial to note that MPS is exclusively available on Linux
systems and requires NVIDIA GPUs with a compute capability of 3.5 or
higher.

Utilizing Streaming

Our dispatcher offers the option to use separate CUDA streams [22] for over-
lapping data copying and inference computation. When CUDA streaming
is enabled, host-to-device data copying can be overlapped with kernel ex-
ecutions from previous requests. This is achieved by utilizing one CUDA
stream dedicated to data copying and another for kernel execution. CUDA
events are used to synchronize these streams, ensuring that a request’s kernel
execution starts only after its data has been copied to the GPU.

In the streaming scenario, the dispatcher process does not wait for the
computation result to be copied back to the CPU before placing it on the
result queue and proceeding to the next request. Instead, it places an
additional event on the queue that is set once the computation result is
ready. The result process is responsible for waiting on this event before
sending the computation result back, allowing the dispatcher to proceed to
the next request and transmit data from host to device while the previous
request’s computation may still be ongoing. In non-streaming mode, the
dispatcher always waits for the result to be available before placing it on the

44

Chapter 4. Architecture

result queue. It should be noted that the use of streaming necessitates the
allocation of input data on the host in pinned memory [47].

Given these considerations, our system currently supports four distinct
dispatcher configurations:

1. No mps share setting and no streaming

2. No mps share setting with streaming for overlapped data copying and
computation

3. mps share setting without streaming

4. mps share setting with streaming for overlapped data copying and
computation

4.5.3 Result Processor

1 def run_dispatcher(result_queue , metrics_queue):

2 metrics = dict()

3

4 while not terminated:

5 result = get_next_result(result_queue)

6

7 # in case of streaming -> wait on result to be ready

8

9 record_result_timestamp(metrics)

10 send_result_to_result_server(result)

11

12 # upon termination , send metrics to node controller

13 metrics_queue.put(metrics)

Listing 4.11: Result Processor process

The result processor’s functionality is straightforward, as illustrated in
Listing 4.11. It operates continuously until terminated by the node con-
troller, polling the result queue and transmitting results back to the result
server via gRPC. In the case of a streaming dispatcher, the result processor
must first ensure result availability by waiting on the CUDA event placed on
the queue by the dispatcher before retrieving and transmitting the result. As
with the router, data transmission over the network introduces latency. To
mitigate this overhead, the result processor uses multiple coroutines. This
approach allows for concurrent processing: when a coroutine initiates the
transmission of a computation result, it yields control back to the event loop.
The event loop can then schedule another coroutine to proceed with sending
the next result, even as the previous transmission may still be in progress.
This asynchronous design effectively masks network latency, optimizing the
overall throughput of the result transmission process.

45

Chapter 4. Architecture

4.6 Networking

In this section, we analyze the networking infrastructure and discuss the
issues encountered during the project. We also present the simplifications
applied to temporarily bypass these problems.

4.6.1 The choice of gRPC

As explained in Section 4.1, all components of the cluster, node, and worker-
level systems can live on the same machine, allowing communication through
shared memory. However in order to scale the cluster and accommodate
larger GPU sets, we need to use separate machines for the nodes, which
requires part of the communication to happen over the network.

We chose gRPC (Remote Procedure Calls) as the networking framework
due to its ease of defining services via protocol buffers [13] and its language-
agnostic nature. As a result, the node controller and the result server were
implemented as gRPC servers.

The node controller’s primary function, beyond receiving model place-
ment information, is to act as a proxy, forwarding client requests to the
workers. To this end, the node controller exposes the serveBatch endpoint,
whose functionality is delineated in Listing 4.8. As our work progressed, this
endpoint increasingly emerged as a bottleneck for the entire cluster, when
transmitting larger batches along with their input data from the router to
the nodes.

The observed network throughput failed to meet the expected bandwidth-
based throughput, especially for vision models employed in object recogni-
tion tasks. Models such as resnet50, vgg19 or mobilenet v2 [50] typically
require inputs of shape 3× 224× 224, translating to approximately 0.6MB
of data when utilizing 32-bit floating point numbers. Common batch sizes
in our system, such as 16 or 32, result in approximate data sizes of 9.6MB
and 19.2MB, respectively. We observed that gRPC’s performance began
to degrade significantly for message sizes exceeding 1MB, with a marked
decrease in throughput.

To further investigate, we compared the performance of gRPC, gRPC
with client streaming, and raw TCP sockets in Python. We performed tests
using two n1-standard-16 VMs with Intel Skylake CPU platforms, lo-
cated in the same Google Cloud Availability Zone. With iperf3 [18], we
measured an available bandwidth of 13.6 Gbps. The experiment involved
sending an equal amount of raw bytes from one client to one server, com-
paring:

• raw synchronous gRPC: The whole payload is sent as a single mes-
sage.

46

Chapter 4. Architecture

Figure 4.4: Comparing achieved throughput in GB/sec between gRPC,
gRPC with streaming (chunk sizes 16KB, 64KB and 512KB) and raw TCP
sockets

• gRPC client streaming: The whole payload is split into smaller
chunks and send via streaming. We have conducted measurements
with different chunk sizes.

• raw TCP sockets: The whole payload is sent using raw TCP.

Figure 4.4 illustrates the results of these measurements. We conducted
20 consecutive runs for each message size, reporting the average through-
put. Initially, throughput is low due to insufficient message sizes to saturate
the network bandwidth. As message sizes increase, gRPC implementations
demonstrate an inability to fully utilize the available bandwidth. While
increasing chunk sizes in the client streaming scenario yields some improve-
ment, only raw TCP sockets achieve bandwidth saturation. We attribute
this performance degradation to the (de)serialization of protocol buffers at
both the client and server ends.

4.6.2 Simulating the Network Transmission Latency

Our observations led us to conclude that while gRPC is suitable for trans-
mitting messages with small payload sizes, it is suboptimal for frequent
transmission of larger data volumes through the network. Raw TCP sockets
would have been more appropriate for this purpose. Given that the primary
objective of this work was to evaluate the impact of various placement poli-
cies on overall cluster throughput, it was crucial to prevent the network from
becoming a bottleneck. Our preference was for GPU execution to be the
limiting factor. Due to time constraints, a complete redesign of our network
setup was not feasible. Consequently, we opted to generate input data at
the workers and simulate the transmission time that would have been in-
curred had this data been sent from the client to the worker using raw TCP

47

Chapter 4. Architecture

(a) f1 (b) f2 (c) f3

Figure 4.5: Measured median network transmission latency across 20 runs
using raw TCP sockets in Python between two n1-standard-16 VMs with
the Intel Skylake CPU platform within the same Google Cloud Availabil-
ity Zone. A different function fi is fit for each of the three measurement
intervals.

sockets.
To achieve this, we profiled the network transmission latency for mes-

sages of varying sizes from client to server, using these measurements to fit
a function interpolating the expected network transmission latency for any
payload size. Specifically, we utilized two n1-standard-16 VMs with the
Intel Skylake CPU platform within the same Google Cloud Availability
Zone. Measurements conducted with iperf3 revealed an average available
bandwidth of 16.6 Gbps between the two VMs, with an average ping latency
of 0.322 ms. We collected the following measurements:

• 100 payload sizes equally distant between 1KB and 1MB

• 100 payload sizes equally distant between 1MB and 100MB

• 50 payload sizes equally distant between 100MB and 1GB

For each payload size, we conducted 20 measurements and retained the
median latency. For all three intervals i, we fit a function fi that interpolates
the expected median network transmission latency based on the message
size. The function fi is of the form

fi(x) = ai ∗ xbi + ci

The measured median latencies as well as the plotted functions f1, f2 and
f3 can be seen in figure 4.5.

Instead of transmitting the actual input data from client to worker, we
send only the input shape. This shape allows us to determine the mes-
sage size as if the actual input data had been transmitted over the network,
enabling us to use our interpolated function to estimate the expected trans-
mission latency. Upon receiving a message, the gRPC server uses the input
shape attached to each request to determine the expected network trans-
mission latency. Before processing the request, it induces a sleep period

48

Chapter 4. Architecture

corresponding to this latency, thereby simulating the actual data transmis-
sion as if TCP sockets had been employed. This approach aims to maintain a
realistic networking setup. It is important to note that this simulation is ap-
plied only to the serveBatch endpoint in the node controller server and the
result server, as these are the sole components affected by the performance
degradation on larger message sizes. All other communication continues to
occur normally over gRPC without simulating network transmission latency.

To illustrate this process, consider a scenario where the router sends a
batch of shape 16 × 3 × 224 × 224 for object recognition to a node. The
router transmits only the shape dimensions (together with some other data)
to the node, keeping the message size small. Upon reception, the node
calculates the payload size of the input data, assuming 32-bit floating point
numbers: 4 · 16 · 3 · 224 · 224 = 9′633′792 bytes. Given this message size,
the node employs the interpolated function f2 to calculate the expected
latency: latexp = f2(9

′633′792) ≈ 8.7 ms. Before forwarding this batch
to the corresponding worker, the thread in the node controller handling
this request induces a sleep period of 8.7 ms. For sentence classification
tasks using language models, this issue is less pronounced as the inputs
are significantly smaller, typically ranging from 4 to 8 KB (depending on
whether 32 or 64-bit integers are used) when employing a sequence length
of 512 tokens and its corresponding attention mask. For messages of this
size, we observe no substantial difference between using gRPC and raw TCP
sockets but we still apply the same procedure as outlined above.

Future work should address this simplification by implementing a more
appropriate networking setup that enables the transmission of input data
from client to workers without introducing a network bottleneck.

4.7 Current limitations

This section highlights several limitations of our current system that should
be addressed in future work.

4.7.1 Models are expected to fit on a single GPU

Our current system assumes that all model replicas can be accommodated on
a single GPU, and does not support models whose size exceeds the capacity
of a single GPU. To address this limitation, the ModelPlacement abstrac-
tion needs to be extended. One potential approach would be to introduce
the concept of ranks for each worker involved in the model’s inference pro-
cess, along with the notion of a primary worker. For instance, Usher [76]
implements this idea, utilizing DeepSpeed [7] to manage the underlying com-
munication between all involved workers.

49

Chapter 4. Architecture

4.7.2 Lack of Support for Dynamic Placement Policy

The current system does not support a dynamic placement policy. The
cluster controller executes the placement policy once at the beginning, and
it remains static throughout the evaluation period. A more realistic setup
should not assume that all models are available from the beginning, but
rather that clients arrive and depart at various points during the evalua-
tion. Furthermore, it should be possible to update the model placement
dynamically based on the actual performance of the cluster. We have out-
lined how the result server (subsection 4.3.4) could be utilized to ingest
feedback data back into the model placement policy. This would also ne-
cessitate additional functionality to dynamically update the current model
placement. Workers unaffected by the updated placement should be able to
continue serving without interruption.

4.7.3 Move clients to a separate machine

As discussed in section 4.3.6, the decision to co-locate clients with other clus-
ter controller components on the same machine was a simplification made
to quickly establish a functional cluster. Due to time constraints, we were
unable to separate them onto distinct machines. We have already outlined
potential solutions for future work section 4.3.6.

4.7.4 gRPC bottlenecks the overall throughput of the cluster

As analyzed in section 4.6, gRPC proved to be a suboptimal choice for
transmitting large volumes of data at high rates through the cluster. While
gRPC is well-suited for sending numerous control messages of smaller size
throughout the cluster, an alternative network architecture needs to be im-
plemented to facilitate the transmission of input data from clients to workers
efficiently.

50

Chapter 5

Placement Policies

In this chapter, we introduce the model placement policies evaluated as part
of this work. Section 5.1 introduces iGniter [81] and section 5.2 introduces
Usher [76]. In section 5.3 we discuss alternative metrics to be used by the
Usher placement policy. Finally in section 5.4 we present a modified version
of Usher based on a Mixed Integer Linear Programming solver.

5.1 iGniter

This section examines iGniter [81], an interference-aware ML inference sched-
uler designed for spatially collocating multiple inference workloads on a sin-
gle GPU. We have chosen iGniter as a baseline, given its ability to model
interference created by colocated workloads on the same GPU. We outline
the core concepts of iGniter in Section 5.1.1, followed by a description of
its analytical model in Section 5.1.2. Section 5.1.3 describes iGniter’s place-
ment algorithm, Section 5.1.4 discusses the required profiling setup and we
finally elaborate on the integration of iGniter into our system in Section
5.1.5.

5.1.1 Overview of iGniter

iGniter is built on the premise that temporal sharing of GPU resources
among multiple workloads is insufficient to maximize GPU resource utiliza-
tion and efficiency. Thus, spatial colocation on the GPU becomes necessary.
However, as models are colocated on the same GPU, they begin to interfere
with one another. iGniter introduces an analytical model that estimates the
inference latency of a workload by accounting for the interference created
by colocated models, thereby ensuring that the Service Level Objectives
(SLO) of individual workloads can still be met. iGniter employs this ana-
lytical model to heuristically generate a model placement plan based on the
following objectives:

51

Chapter 5. Placement Policies

Notation Definition

tijinf Inference latency of workload i on GPU j

tiload DNN inference data loading latency of workload i
tifeedback DNN result feedback latency of workload i

tijgpu GPU execution latency of an inference workload i on GPU j

tijsch Scheduling delay of an inference workload i on GPU j

tijact GPU active time of an inference workload i on GPU j
rij GPU resource allocation of an inference workload i on GPU j
fj Actual frequency of a GPU j
F Maximum GPU Frequency

Table 5.1: iGniter Notation

1. It colocates models such that the increase in inference latency of colo-
cated models due to interference is minimized while still guaranteeing
the SLO.

2. It tries to limit the number of GPUs required to serve all workloads.

5.1.2 Analytical Model to predict the inference latency

We provide a high-level intuition of the analytical model introduced by iG-
niter and refer the reader to the original paper for more detailed informa-
tion. Table 5.1 defines the notation for the analytical model that was in
parts copied from the original paper.

The inference latency of a workload i on GPU j is given by equation 5.1.
It represents the sum of the time required to load data from host to device,
the time for computation on the GPU, and the time to copy results back
from device to host.

tijinf = tiload + tijgpu + tifeedback (5.1)

Both the loading time tiload and the feedback time tifeedback depend on
the size of the data that needs to be transmitted per request, the batch size
and the bandwidth available on the PCIe bus.

tijgpu =
tijsch + tijact

fj
F

(5.2)

iGniter’s primary contribution lies in the calculation of tijgpu, the time re-
quired for the kernels of a workload i to execute on a GPU j while poten-
tially colocated with other workloads. The formula is provided by equation
5.2. iGniter identifies three potential sources of interference that will impact
a workload’s gpu latency.

52

Chapter 5. Placement Policies

1. tijsch incorporates the scheduler overhead incurred by a workload’s ker-
nels as they are colocated with kernels of other workloads. iGniter
models this delay as a linear function with respect to the number
of colocated workloads. The authors assume that the GPU scheduler
allocates kernels of different inference workloads in a round-robin man-
ner. Consequently, as more workloads are colocated, the time for the
next kernel of the same workload to be scheduled increases.

2. tijact quantifies the time that GPU j actively executes a kernel from
workload i. While setting MPS [24] shares prevents multiple work-
loads from contending for available Streaming Multiprocessors (SM),
they still share underlying resources such as the L2 cache. The au-
thors’ measurements demonstrate that GPU active time exhibits an
inverse relationship with the L2 cache hit ratio of the workload. A
high hit ratio suggests low contention for L2 cache space among dif-
ferent workloads, resulting in low GPU active time. Conversely, a low
hit ratio indicates severe contention at the L2 cache level, leading to
longer active time.

3. Finally, the authors state that as the number of colocated workloads
on a GPU increases, so does the power consumption. To prevent
the GPU from exceeding its power cap, it automatically adjusts its
frequency. The slowdown in GPU speed can be quantified by the ratio
fj
F , where fj is the GPU’s frequency under colocation and F denotes
the maximum GPU frequency.

This model requires a number of hardware and workload specific coef-
ficients that need to be acquired upfront by conducting some profiling on
the workloads that are going to be served. We will address the profiling
in Section 5.1.4 and refer the reader to the original paper as well as the
open-sourced implementation of iGniter [17] for the remaining details.

5.1.3 A heuristic placement algorithm to minimize cost

With the analytical model established, iGniter addresses the following prob-
lem: Given an expected request arrival rate and a latency SLO, what batch
size bi and how much resources rij should be allocated to workload i running
on GPU j to fully serve all requests within the SLO while minimizing the
total cost. It is important to note that the GPU resource share rij refers to
the MPS share. For instance, if rij = 0.5, workload i is allocated 50% of all
SMs on GPU j.

iGniter’s placement algorithm heuristically assigns workloads to GPUs
and dynamically adjusts the GPU resources allocated to each workload as
new workloads are added, ensuring continued fulfillment of the SLO. The
algorithm proceeds as follows:

53

Chapter 5. Placement Policies

1. Workloads are sorted in descending order based on their rilower value,
which represents the minimum amount of resources a model requires
to serve its workload when running alone on a GPU with a batch size
bi. Both rilower and bi are obtained through profiling (Section 5.1.4).
Thus the more heavy and resource demanding workloads are placed
first which is driven by the goal to reduce GPU fragmentation.

2. iGniter then greedily attempts to place workloads onto GPUs that
may already be partially occupied by other workloads. It selects the
GPU that, according to its analytical model, will result in the least
increase of interference caused by the addition of the new workload.

3. For each GPU, the algorithm may incrementally increase the GPU
resources assigned to each workload until the SLOs of all workloads
can be met again. This step-wise increase is feasible as long as the
sum of GPU resources allocated to all workloads on the GPU does not
exceed 100%.

4. If no existing GPU can host the model while still guaranteeing the
SLOs of the models it already hosts, a new GPU is added to the
cluster.

5.1.4 Profiling

The implementation of iGniter is available as open-source software on GitHub
[17]. It utilizes the NVIDIA Triton Inference server with the TensorRT run-
time [53]. The repository also includes the necessary profiling scripts for
collecting hardware and workload-specific coefficients required for the an-
alytical model. These scripts are specifically designed for the TensorRT
backend. As our system is based on PyTorch, we needed to modify portions
of these scripts to ensure compatibility with our setup and rerun them for
all models used in the evaluation. This section will first describe the original
iGniter profiling script configuration, followed by a discussion of the mod-
ifications and challenges encountered during the adaptation process to our
system.

iGniter profiling

In addition to hardware-specific coefficients such as GPU frequency, PCIe
bandwidth, or GPU idle power consumption, the analytical model requires
a set of workload-specific coefficients. These include, for example, the L2
cache activity of a model when running with various batch sizes and MPS
shares, the power consumption of a model when run in isolation, and the
GPU active time of a workload. To collect these coefficients for each model,
iGniter proceeds as follows:

54

Chapter 5. Placement Policies

1. It first loads the model under consideration from PyTorch and converts
it into ONNX format [33].

2. It then compiles and optimizes the models using the TensorRT com-
mand line wrapper trtexec [54].

3. Finally it runs the compiled model with trtexec as part of the Ten-
sorRT runtime environment and uses the NVIDIA Nsight Systems [28],
NVIDIA Nsight Compute [26] and NVIDIA System Management In-
terface [29] profiler to collect the necessary coefficients.

It is worth noting that although the paper mentions the use of streaming
by Triton inference servers to overlap data copying and kernel execution of
independent requests, all profiling scripts published in the repository left
the --streams flag in the trtexec command at its default value of 1. Con-
sequently, we also refrained from using streaming during our profiling to
maintain consistency with the original iGniter implementation.

iGniter profiling scripts adapted to PyTorch

This section outlines the key differences between our profiling scripts and
the original ones. The primary distinction lies in the use of an alternative
inference runtime environment, specifically PyTorch instead of TensorRT.
We have developed a Python script that replicates the functionality of the
trtexec command-line tool, providing an identical configuration interface
to that used in the original scripts. For a given model and configuration, our
script utilizes pre-generated data to apply a consistent load on the model.
As in iGniter, the same NVIDIA profilers can be employed to collect the
required metrics in the background. Unlike iGniter, we neither compile nor
optimize the model, instead using its raw loaded version from PyTorch.

During certain profiling measurements, we encountered issues when using
the NVIDIA Nsight Compute (ncu) profiler while the MPS daemon was
running. We noticed that the ncu release notes [25] indicate that profiling
with ncu while MPS is running is unsupported and may result in undefined
behavior. With NVIDIA Driver versions ≥ 525, the profiling scripts simply
crashed. However, using a Driver version of 470 did not result in crashes and
reported the required coefficients. Nevertheless, we remain uncertain about
the reliability of these measurements, given that the undefined behavior
mentioned in the ncu release notes is not explicitly tied to a particular
driver version. We have brought this limitation to the authors’ attention.
Consequently, we were compelled to run all profiling measurements on the
older 470 Driver, and all reported evaluation results for iGniter are also
based on the 470 Driver.

This constraint unfortunately prevented us from using the latest versions
of several libraries. For instance, CUDA 12.x requires a minimum driver ver-
sion of ≥ 525.60.13 [4]. Thus, CUDA 11.8 is the highest version we could

55

Chapter 5. Placement Policies

use for iGniter. We attempted to build PyTorch from source and link it
against a local CUDA 12.4 toolkit with the CUDA Forward Compatibility
Package [5] installed, providing support for running CUDA 12.x on a 470
Driver. However, measurements revealed that this compiled version of Py-
Torch suffered from severe performance degradation compared to PyTorch
compiled with CUDA 11.8. Consequently, we decided to use CUDA 11.8
with the 470 Driver. The exact setup for iGniter will be detailed in Chapter
6.

The original iGniter scripts contain several hardcoded constants that
appear to be tightly coupled to the models evaluated in the paper. Some of
these constants did not generalize well to the models we used additionally.
During profiling, we occasionally had to adjust some of these constants for
specific models to ensure the scripts successfully returned the coefficients.

5.1.5 Integration of iGniter into our system

Apart from adjusting the profiling scripts, the integration of the iGniter
placement policy into our system proved to be relatively straightforward.
We were able to incorporate the entire placement algorithm into our system
with minor adjustments to adhere to the interface introduced in section 4.3.2.
This validates our system’s ability to abstract the underlying placement and
expose a simple API. Note that iGniter also assumes the target request
submission rate and the SLOs for each model to be known upfront and
available to the placement policy.

As we conducted our evaluation in a fixed-size GPU cluster, we modified
iGniter to function as a best-effort policy. Once the complete placement
plan by iGniter is available, we greedily assign the placement as returned by
the algorithm to GPUs until either all workloads are placed or the available
resources are exhausted.

For the actual inference execution, we will choose a Worker, whose dis-
patcher process both sets the MPS share and uses CUDA streaming to
overlap the data copying and computation of independent requests on the
GPU. We refer the reader back to Section 4.5.2 for the details on this.

5.2 Usher

This section provides a detailed description of the Usher paper [76]. Usher
is designed to holistically mitigate interference for resource optimized ML
inference. As Usher outperforms GPUlet [60], AlpaServe [71], and Shepherd
[82], works we had also considered as potential baselines, we considered
Usher to be an optimal baseline for our research. Consequently, we have
invested substantial time in comprehensively understanding and evaluating
Usher.

56

Chapter 5. Placement Policies

It is worth noting that at the time of writing, only a small, non-functional
portion of the Usher repository was open-sourced on GitHub [56]. We
reached out to the authors with a series of questions regarding implemen-
tation details and requested full access to the code. However, due to time
constraints, the authors have not yet been able to respond to our request
but have assured us that they will do so as soon as possible. As a result,
we have implemented the Usher placement policy from scratch based on
our understanding of the paper and the partially published code. We will
outline the main ideas and components of the Usher framework in Section
5.2.1 and provide a detailed explanation of our implementation along with
the challenges that we have encountered in Section 5.2.2.

5.2.1 Overview of Usher

Usher is an ML inference scheduler designed to heuristically co-locate work-
loads on GPUs while mitigating interference. The Usher tool can operate
in two distinct settings:

1. Non-fixed sized cluster: Given the target submission rate and the
Service Level Objectives (SLOs) of each model to be served, Usher
utilizes as many GPUs as necessary to fulfill the entire workload of all
models within their respective SLOs. Among all placement scenarios
that meet these requirements, Usher selects the one with minimal cost.

2. Fixed-sized cluster: Given a limited number of available GPUs,
Usher’s objective shifts to maximizing the cluster’s overall goodput. In
this setting, Usher aims to serve as many requests as possible without
violating their SLOs using the limited number of GPUs available. It
is important to note that in this setting, Usher provides no guarantees
on whether the workloads of all models can be served.

The following paragraphs will describe the main steps of the Usher tool
in achieving these goals.

Estimation of Model Resource Requirements

To determine whether to co-locate two models on the same GPU, Usher re-
quires each model’s resource requirements in terms of both memory (Mreq)
and computation (Creq). Rather than undertaking the costly and time-
intensive effort of profiling these requirements for each model individually,
Usher proposes estimating them using pre-trained regression models, thus
avoiding the need to execute the workloads upfront. Usher estimates the
compute and memory requirements of individual kernels and then derives
the overall model requirements from these estimates. Usher employs three
stacked regression models for this purpose, each taking as input the batch

57

Chapter 5. Placement Policies

size, the size of the kernel’s parameter weight tensor and input tensor, the
number of floating point operations conducted by the kernel, and the GPU
type:

1. The Creq-Regressor estimates the computational requirement of the
kernel. Usher uses the achieved occupancy [21] metric to quantify
the compute requirements of a kernel. The achieved occupancy rep-
resents the ratio between the number of active warps during a ker-
nel’s execution and the maximum number of warps that can be active,
across all SMs in a GPU.

2. The Mreq-Regressor estimates the memory requirement of the ker-
nel. Usher uses the dram utilization metric to quantify the memory
requirements of a kernel. According to the NVIDIA Nsight Compute
(ncu) documentation [19], the dram utilization metric is part of
the older NVIDIA nvprof [32] profiler, and mapped to the equiva-
lent dram throughput.avg.pct of peak sustained elapsed metric
in the ncu profiler. To our understanding, this metric measures DRAM
bandwidth utilization rather than DRAM capacity utilization, which
appears to contradict the remainder of the paper that seems to con-
sistently refer to DRAM capacity when discussing Mreq.

3. The Time-Regressor estimates the execution time of a kernel.

Using these regression models, Usher estimates a model’s Creq andMreq
for a given batch size as follows:

1. Usher begins by decomposing the model’s operator computation graph,
replacing each operator node in the graph with the sequence of kernels
it invokes.

2. For each kernel in the graph, Usher utilizes the Creq-Regressor and
the Mreq-Regressor to calculate the kernel’s compute and memory
requirements.

3. Using the Time-Regressor and the dependency ordering of kernels in
the computation graph, Usher determines the start and end time of
each kernel as an offset from the start of the very first kernel in the
graph. If the computation graph has parallel branches, indicating
that kernels might execute concurrently as part of different streams,
Usher can leverage the timing information to determine whether the
computation of two kernels could potentially overlap.

Usher calculates the Creqm,b of a model m with batch size b based on
equation 5.3 as the maximum sum of Creq of any set of overlapping kernels.

Creqm,b = max
S∈sets of overlapping kernels

(∑
i∈S

Creqi

)
(5.3)

58

Chapter 5. Placement Policies

TheMreqm,b for a modelm with batch size b is calculated based on equa-
tion 5.4. It is the sum of the size of the model’s weights and the maximum
sum of Mreq of any set of overlapping kernels.

Mreqm,b = model size+ max
S∈sets of overlapping kernels

(∑
i∈S

Mreqi

)
(5.4)

Grouping compute and memory heavy models

Once the Mreq and Creq values for each model and batch size are deter-
mined, Usher groups the models into smaller, nearly equal-sized groups such
that the sum of the Creq and the sum of the Mreq of all models in each
group are approximately equal, i.e.,

∑
iCreqi ≈

∑
iMreqi. The motivation

behind forming smaller groups with balanced compute and memory require-
ments is to increase the likelihood of colocating models with complementary
resource needs and to reduce fragmentation. To achieve this, Usher uses
a variant of the K-means clustering algorithm, which proceeds in several
rounds as follows:

1. Initially, each model starts as its own group.

2. Usher calculates the distance D between any two groups as D =
|
∑

iCreqi −
∑

iMreqi|, where i iterates over the models of both
groups.

3. It groups two models such that D is minimized.

4. Each new group is considered as a new element, and the algorithm
repeats from step 2 until the desired group size is reached.

As the clustering algorithm has not been open-sourced by the authors,
some ambiguities and confusion remain. Firstly, from the paper’s descrip-
tion, we understand that in each round, pairs of models are merged into a
group, equivalent to creating a maximum cardinality matching between the
groups. It remains unclear how the authors have managed to control the
group size in each iteration using a k-means based algorithm. Not limiting
the group size could lead to unbalanced group sizes with k-means.

Additionally, the paper states that two models should be merged into
the same group such that the distance D is minimized. This statement is
ambiguous to our understanding, as it is not clear whether the distance D
refers to the distance of a particular group or to the sum of distances of all
groups. This could translate to both a local or a global objective criteria in
each round:

• Local objective: Minimize the distance of each group individually,
assuming some underlying greedy order.

59

Chapter 5. Placement Policies

Figure 5.1: Concept of model replicas in Usher. The figure is taken from
the Usher [76] paper.

• Global objective: Minimize the sum of distances min(
∑

iDi) of all
groups.

The local objective assumes there is an underlying ordering in which the
individual groups are visited, while the global objective is independent of
any underlying order of visitation.

In Section 5.2.2, we present our choice of implementation for this group-
ing algorithm. Our implementation uses the global objective criteria in each
round and ensures that no more than two models end up in the same group
during a same round, utilizing a min-weighted maximum cardinality match-
ing algorithm.

Heuristic Placement of Model Replicas

Once the groups are known, Usher proceeds to heuristically place one group
after another onto the GPUs. The authors do not specify the order in
which the groups are placed. When placing the models of a group, Usher
first attempts to utilize any remaining resources from GPUs already hosting
models from previously placed models before initializing new GPUs.

For the placement of models onto GPUs, Usher introduces the concept of
a model replica. This concept is illustrated in Figure 5.1. While a certain
batch size for a model might be able to fully satisfy a model’s workload, this
approach may result in a high degree of fragmentation. Instead, it could be
more efficient to replicate the model multiple times with a smaller batch size,
thereby reducing the resource requirements of each replica and consequently
reducing fragmentation.

At the beginning of placing a group, Usher generates the set of all possi-
ble configurations for the models within the group. A configuration consists
of a (rep factor, batch size) tuple for each model, specifying its repli-
cation degree and the corresponding batch size. The batch size for a model

60

Chapter 5. Placement Policies

remains constant across all its replicas. Usher then heuristically attempts
to identify the optimal configuration based on its optimization criteria of
maximizing goodput and minimizing cost. Usher defines the goodput of a
model as the ratio of the model’s batch size to its expected time (including
in-queue wait time) to serve the batch. However, neither the paper nor the
open-sourced code provide details on how this in-queue wait time is mod-
eled. In chapter 6, we will demonstrate that modeling the queuing delay is
crucial for accurately estimating the goodput.

For each configuration, Usher first separates models into three groups. A
model is considered memory heavy if Mreq

Creq ≥ 1.2. It is considered compute

heavy if Creq
Mreq ≥ 1.2 or neutral otherwise. Each group is then sorted in

decreasing order with respect to their total resource requirements Rreq =
Mreq + Creq for the batch size under consideration. It then places the
models by alternating between memory and compute heavy models one after
another onto the GPUs, first utilizing GPUs already used by the same group,
then GPUs used by other groups with spare capacity, and finally adding
GPUs to the cluster until the load of a model is served or no more GPUs
are available. The neutral models are placed last.

We will demonstrate in Section 5.4 that both the order of placing groups
and the greedy order of placing models within a group can lead to sub-
optimal goodput in Usher.

Operator Graph Merging

The authors of Usher present an additional contribution in their paper,
which involves merging operators of different computation graphs executing
on the same GPU with similar weight matrices to reduce interference in
the GPU cache. As our focus is on evaluating Usher’s placement policy, we
will not delve further into this topic. Interested readers are encouraged to
consult the original paper for more information on this aspect.

5.2.2 Implementation of Usher

Given that only parts of the Usher codebase have been open-sourced at the
time of writing, we have decided to implement Usher from scratch based
on our understanding. As previously highlighted, numerous ambiguities
remain unresolved and the decisions taken on crucial aspects of the algorithm
are based on our best understanding of the paper and the published code.
Notably, we encountered contradictions between the code and the paper
(e.g. in the formula for estimating a model’s goodput). We have aligned our
implementation with the descriptions provided in the paper. Consequently,
it remains unclear how accurate our implementation is compared to the
original Usher, something the reader should keep in mind for the evaluation
section. We will describe and defend our most important implementation

61

Chapter 5. Placement Policies

choices below and invite the reader to review our code for the complete
implementation.

Profiling Model Resource Requirements

As explained in Section 5.2.1, the Usher placement algorithm requires the
memory and compute requirements of a model for various batch sizes. Unfor-
tunately, none of the three regression models for estimating the Mreq, Creq,
or latency of a kernel is available, and limited information is shared about
their implementation and training process. Consequently, we have opted to
explicitly profile the resource requirements for all models and batch sizes
under consideration. This approach allows us to replace the three regression
models with an oracle that can accurately predict the Mreq and Creq based
on the profiled results.

Usher states that they conducted their profiling measurements for train-
ing the regression models using the NVIDIA Nsight Systems (nsys) [28] pro-
filer with the print-gpu-trace option enabled. They utilized the achieved occupancy

for Creq and dram utilization for Mreq. However, we believe that the
authors may have used the nvprof profiler instead, as these terms are ex-
clusive to nvprof , and achieved occupancy is not even available in nsys.
The nvprof profiler will be deprecated in a future CUDA release and has
been replaced by the nsys profiler for system-wide metrics and the ncu for
kernel-granularity metrics in the meantime.

For our oracle, we have decided to use combined measurements from the
more up to date nsys and ncu profilers. Specifically, for each model and
batch size, we conduct two profiling runs:

• Using nsys to collect the GPU trace with the --report cuda gpu trace

flag

• Using ncu to collect the sm warps active.avg.pct of peak sustained active

metric, which is equivalent to achieved occupancy in nvprof [19]

By analyzing the GPU trace, we can identify concurrently executing
kernels and, by matching this data to the ncu profiler outputs, we can
aggregate the Creq values of the concurrently executing kernels to finally
obtain the overall Creq for the entire model. We match the kernels between
the nsys GPU trace and the ncu output based on their names, order and
launch configuration.

For the Mreq, we have decided not to use the dram utilization or its
ncu equivalent dram throughput.avg.pct of peak sustained elapsedmet-
ric. This decision is based on the paper’s consistent reference to the Mreq
metric as the maximum capacity required by the model during execution,
and we believe that DRAM bandwidth utilization is not the appropriate
metric for this purpose. Instead, given our use of PyTorch as the runtime

62

Chapter 5. Placement Policies

environment, we use torch.cuda.max memory reserved [42], which pro-
vides the maximum amount of memory held by the Torch caching allocator
at any point during model execution. This includes both the memory re-
quired to store model weights and the maximum memory capacity needed
for intermediate computations of any set of concurrently executing kernels
within the model. All profiled measures can be found in table A.1 of the
Appendix.

Minimum weighted maximum cardinality matching for grouping

We have previously discussed the ambiguities about the model grouping in
Usher in Section 5.2.1. It remains unclear how Usher has modified the k-
means algorithm for their purpose. Notably, we are uncertain how the group
size in each iteration of the algorithm is bounded such that no more than
two models can be merged into the same group in each iteration. Addition-
ally, the question of whether to optimize globally or locally within a round
persists.

Instead of creating the groups based on a variant of k-means, we opted
for a round-based minimum-weight maximum cardinality matching using
the min weight matching algorithm from the networkx library [20]. The
algorithm proceeds as follows:

1. Each model starts as its own group.

2. Calculate the pairwise distance between any two groups as defined by
Usher.

3. Create a Graph with one node per group. Add an edge between any
pair of groups and set its weight equal to the distance between the two
groups.

4. Run the networkx.min weight matching algorithm.

5. Merge any two groups that have been matched to each other and
repeat from step 2 until the desired group size has been reached.

The matching part of the algorithm ensures that in each round, no more
than two models end up in the same group, and the maximum cardinality
ensures that there can be at most one unmatched group at the end if the
number of groups was odd. The minimum weight property ensures that we
minimize the sum of all distances, corresponding to the global objective. It
doesn’t guarantee that the sum within a group is minimized. If the maximum
desired group size is n, the algorithm requires ⌊log2(n)⌋ rounds.

63

Chapter 5. Placement Policies

Choosing the right replication factor

The set of possible batch sizes for a model is given in the Usher paper
as {4,8,16,32,64,128}. The situation for the replication factor is somewhat
more ambiguous. Usher states that for each model m, the replication factor
is chosen from the set {i · clm}, where i ∈ {1, 2, ..., 6} and clm is the minimum
number of GPUs required to complete all of the model’s m requests within
the SLO when using the highest possible batch size. Usher also states that
the maximum replication factor of a model to choose from is upper bounded
by the total number of GPUs present in the cluster. Assuming a fixed-size
cluster of 4 GPUs and a model m with clm = 5, the model’s replication
factors to choose from would be {5, 10, 15, 20, 25, 30}. Due to the upper
bound of 4 GPUs, the set of replication factors would be empty.

It remains unclear in the original Usher implementation whether such
a model should not be served at all or be assigned a maximum replication
factor of 4. We have decided in such instances to not serve the model at all.
We will propose a modified version of Usher in Section 5.4 that will ignore
the clm multiplier.

PyTorch for inference execution

The Usher paper specifies the use of TensorFlow for inference execution.
In contrast, we will be using PyTorch for our implementation and will not
apply any optimizations or compile the models in any way. Similar to Usher,
we will set the MPS share at the worker level based on its Creq.

5.3 Usher extended with different metrics

This section presents some of our own ideas to plug alternative metrics into
the Usher placement policy.

5.3.1 Weighted Average Achieved Occupancy

Our profiling results reveal that the achieved occupancy, suggested as the
metric to quantify compute requirements (Creq), is remarkably high for all
models and batch sizes profiled. This high occupancy is to such an ex-
tent that no two models can be co-located, regardless of batch size. The
left plot in Figure 5.2 illustrates the Mreq on the x-axis, measured us-
ing torch.cuda.max memory reserved [42], and the achieved occupancy

measured using ncu on the y-axis for a mixture of vision and language mod-
els [16,50]. Each model is represented by multiple points, one for each batch
size. Precise values for each model and batch size can be found in Table A.1
of the Appendix.

The plot demonstrates that while the Mreq for most models and batch
sizes is below 50%, the achieved occupancy, with one exception for alexnet,

64

Chapter 5. Placement Policies

Figure 5.2: Three different Creq metrics considered for Usher mea-
sured on a NVIDIA V100 GPU in Google Cloud Platform. There is
one point per model per batch size. The Mreq metric corresponds to
torch.cuda.max memory reserved [42]

(a) resnet50 with batch size 4 (b) bert with batch size 16

Figure 5.3: Achieved Occupancy measured for one iteration of object recog-
nition and text classification run on a NVIDIA V100.

consistently exceeds 80%. Consequently, no two models will be co-located,
as their sum in Creq would always exceed 100%, preventing Usher from
co-locating them. With the exception of alexnet, vgg19, bloom 560, t5
and xlnet, all other models have also been evaluated in the Usher paper.
Given these measurements, we are uncertain how to reproduce co-location
scenarios reported in the paper, such as efficientnet b7 with bert (also
used for text classification).

Usher uses the maximum achieved occupancy across any set of overlap-
ping kernels as the model’s Creq. Instead we have analyzed how the achieved
occupancy looks like for individual kernels an how it compares to the maxi-
mum allocated by Usher. Figure 5.3 presents two examples: resnet50 with
a batch size of 4 used for object recognition, and bert with a batch size of
16 used for text classification. Both plots measure a single batch execution

65

Chapter 5. Placement Policies

and report the achieved occupancy over time. We have merged the metrics
obtained through ncu with the CUDA GPU trace obtained through nsys.
Each bar in the plot represents an interval. The width of the bar represents
the interval length, and the height corresponds to the sum of achieved oc-
cupancies of all kernels whose execution overlaps with the interval. Interval
boundaries correspond to the start and end times of all kernels within the
model.

Both figures demonstrate that for most of the time, the achieved occu-
pancy is significantly below the maximum reached and allocated by Usher,
suggesting that substantial computational resources might remain unused
for extended periods. We have added the weighted average to the plot,
calculated as the sum of the interval lengths multiplied by their achieved
occupancy, divided by the total execution time. The weighted average
achieved occupancy is considerably below the maximum achieved occupancy
and could be a better metric to quantify how much resources are on average
required by a model over the whole execution time.

The middle plot in Figure 5.2 shows the weighted average achieved oc-
cupancy for the same models and batch sizes as in the left plot. We observe
that using the weighted average achieved occupancy creates more potential
for co-location from a purely arithmetic perspective, as most models and
batch sizes now show a Creq between 25% to 50%. Note that we have not
altered the Mreq value. Points from the left to the middle plot only move
along the y-axis. The weighted average achieved occupancy for all models
and batch sizes can be found in Table A.1 of the Appendix.

Based on these insights, we have created a slight modification of Usher
that maintains the exact same algorithm but considers the weighted av-
erage achieved occupancy as the Creq instead of the maximum achieved
occupancy.

5.3.2 Weighted SM Utilization

Building upon the idea of reusing the Usher algorithm with different metrics
for the Creq, this section introduces the SM Utilization. The SM utiliza-
tion for a kernel is defined as the ratio between the number of Streaming
Multiprocessors (SMs) a kernel requires based on its launch configuration
and the number of SMs available on the GPU. This value is capped at
100%. If the SM utilization exceeds 100%, it indicates that the blocks of
the kernel will be scheduled in consecutive rounds. The SM utilization is
mathematically expressed as:

sm utilization = min

(
100,

num sms needed

num sms on gpu

)
The following paragraphs describe the method for calculating the number

of SMs needed (num sms needed). Using the nsys profiler, we can obtain

66

Chapter 5. Placement Policies

the CUDA GPU trace for each kernel of a model, which provides the launch
configuration of the kernel, including the dimensions of the grid size and
the block size [6]. The total number of thread blocks is calculated as the
product of the grid dimensions:

num thread blocks = gridx · gridy · gridz
Thread blocks in GPU computing are scheduled onto Streaming Multi-

processors (SMs) and are never split across multiple SMs. Multiple blocks
can be scheduled onto the same SM. The number of blocks that can be ex-
ecuted concurrently on an SM is limited by several factors and depends on
the GPU’s capabilities [21,30].

Factors Limiting Concurrent Block Execution

1. Maximum number of threads per SM: Each GPU has a maxi-
mum number of threads per SM that can execute concurrently. This
limits the number of blocks that can execute on the SM. The maximum
threads per SM is obtained from the GPU’s technical specifications,
and the number of threads per block is the product of the block di-
mensions.

bound max threads =

⌊
max threads per sm

blockx · blocky · blockz

⌋
2. Maximum shared memory per SM: Each SM has a maximum

amount of shared memory distributed across all threads running on the
SM. The shared memory required by a block is the sum of static shared
memory (used for shared variables in the kernel) and dynamic
shared memory specified in the kernel launch configuration.

bound shared mem =

⌊
max shared mem per sm

stat shared mem+ dyn shared mem

⌋
3. Maximum number of registers per SM: Each SM has a maximum

number of registers available to be shared across all executing threads.
This value is obtained from the technical specifications, while the num-
ber of registers used per thread is obtained from the GPU trace.

bound registers =

⌊
max regs per sm

blockx · blocky · blockz · regs per thread

⌋
4. Maximum number of blocks per SM: Each SM has a maximum

number of blocks bound blocks that it can execute concurrently, as
specified in the technical specifications.

67

Chapter 5. Placement Policies

The maximum number of blocks num blocks per sm that can be exe-
cuted concurrently on an SM is the minimum value across all four bounds
above. Finally the number of SMs needed num sms needed for running a
kernel based on its launch configuration is calculated as

num sms needed =

⌈
num thread blocks

num blocks per sm

⌉
Motivation for Using Weighted SM utilization

The SM utilization can be used to quantify whether there are enough SMs
on the GPU to execute multiple kernels from different models. For example,
on an NVIDIA V100 GPU with 80 SMs:

• If kernel 1 requires 50 SMs and kernel 2 requires 20 SMs, both kernels’
blocks can be launched on distinct sets of SMs.1

• If however kernel 2 requires 40 SMs, the total sum of required SMs
(90) exceeds the available 80 SMs. This results in interference at the
SM level, as some blocks must wait for SMs to become available.

It’s important to note that SM utilization does not account for interfer-
ence at lower levels of the GPU, such as the L2 cache for example.

Observations on SM Utilization

We have calculated the SM utilization for all kernels across various models
and batch sizes under consideration. Our analysis reveals that when us-
ing the maximum SM utilization of any kernel as a model’s computational
requirement (Creq), the Creq would be 100% for all models and batches
examined. Figure 5.4 illustrates the SM utilization again for resnet50 with
a batch size of 4 and bert with a batch size of 16. These values are derived
from the same profiling measures used in our previous analysis of achieved
occupancy and its weighted average counterpart in Figure 5.3.

For resnet50, we observe that using the maximum SM utilization as
the model’s Creq would result in some SMs remaining unused for certain
kernels. This suggests potential inefficiencies in resource allocation when
relying solely on maximum SM utilization as a metric. In contrast, for
bert, we note that the weighted average SM utilization and maximum SM
utilization essentially overlap. This convergence occurs because all kernels
invoked in bert consistently require all available SMs on the GPU, indicating
a high and constant demand for computational resources.

A comparison between Figures 5.4b and 5.3b yields interesting insights.
We have employed two distinct metrics to quantify the computational re-
quirements for the same model and batch size. Notably, while the weighted

1The exact placement of kernel blocks to the SMs depends on the GPU block scheduler.

68

Chapter 5. Placement Policies

(a) resnet50 with batch size 4 (b) bert with batch size 16

Figure 5.4: SM Utilization measured for one iteration of object recognition
and text classification run on a NVIDIA V100.

average achieved occupancy suggests that bert could potentially be col-
located with another model, the weighted SM utilization metric indicates
that no model or batch size could be collocated with bert under the Usher
colocation criteria. This highlights the importance of choosing appropri-
ate metrics for assessing resource utilization and making informed decisions
about model collocation.

Finally the right most plot of figure 5.2 shows the weighted SM utilization
for all profiled models and batch sizes. While a number of models, particu-
larly language models, have a high weighted SM utilization excluding colo-
cation, some models, especially vision models with small batch sizes show
potential for colocation. Table A.1 of the Appendix contains the weighted
SM utilization of all profiled models and batch sizes. We will compare the
weighted achieved occupancy and weighted SM utilization in greater detail
in chapter 6.

5.4 Usher extended with Mixed Integer Linear Pro-
gramming

In this section we analyze some issues related to the Usher placement policy
that are specific to the fixed size cluster and do not appear in the non-fixed
size cluster. Section 5.4.1 analyzes Usher’s placement order of models and
Section 5.4.2 discusses its replication factor multiplier. Finally we present a
Mixed Integer Linear Programming approach in Section 5.4.3 that addresses
these issues.

5.4.1 Problematic Placement Order within and Across Groups

As discussed in Section 5.2.1, the order in which models are placed within
groups or across groups can significantly impact Usher’s goal of maximizing
the cluster’s overall goodput. In this section, we examine specific scenarios

69

Chapter 5. Placement Policies

Figure 5.5: Model placement obtained from Usher for alexnet, gpt2,
resnet50 and t5 each having an expected request arrival rate of 400 re-
quests per seconds and an SLO of 200ms. The x-axis shows the achieved
occupancy.

that demonstrate suboptimal outcomes due to Usher’s placement heuristics.

Problematic Heuristic Order within a Group

Consider a scenario with two vision models [50], resnet50 and alexnet,
and two language models [16], t5 and gpt2. Each model has an expected
request arrival rate of 400 requests per second (req/s) and a Service Level
Objective (SLO) of 200 ms. The cluster is fixed and has one node with
4 GPUs attached to it. The maximum group size is 4, as specified in the
Usher paper, i.e the clustering algorithm will return one group containing
all 4 models. Table 5.2 contains the required profiled metrics. We use
the achieved occupancy as Creq. As a reminder the expected goodput is
calculated as the ratio between the batch size and the time it takes to execute
it.

The model placement obtained by our implementation of Usher is dis-
played in Figure 5.5. The expected goodput for this placement is

min(400, 3 · 137.38) +min(400, 1067.13) = 800

requests per second calculated as the minimum of the models’ expected
request arrival rates and their respective replicated goodputs.

However, a more optimal placement in terms of maximizing the total
goodput could have been achieved by placing one replica of alexnet with
a batch size of 4, one replica of resnet50 with a batch size of 4, and two
replicas of t5 with a batch size of 16. This would have resulted in an
expected goodput of 1092.04 req/s. The reason that Usher cannot find this
placement has to do with the order in which the models are placed onto the
GPUs. An ordering in which both alexnet and resnet50 appear before t5
is not possible according to Usher. The reasoning is as follows:

1. Usher first discards all batch sizes whose latency violates the 200 ms
SLO.

70

Chapter 5. Placement Policies

Figure 5.6: Model placement obtained from Usher for alexnet, bert, gpt2,
resnet50 and vgg19 each having an expected request arrival rate of 400
requests per seconds and an SLO of 300ms. The x-axis shows the achieved
occupancy.

2. To serve the entire load, resnet50 and alexnet each require at least
one replica, while gpt2 and t5 require at least 4 and 3 replicas of their
highest batch sizes, respectively. This means the replication factors for
gpt2 are multiples of 4, and the replication factors for t5 are multiples
of 3.

3. Usher next generates the set of all possible configurations. Each con-
figuration holds a (rep factor, batch size) tuple for each model.

4. Since all models are compute heavy (i.e Creq
Mreq ≥ 1.2), Usher places the

models in reverse order according to their total resource requirement
Rreq = Mreq + Creq. However, there is no order in which alexnet

has a higher Rreq than t5, so it is never possible to have an order that
places both alexnet and resnet50 before t5.

5. As the Creq of all models is greater than 69%, no model colocation
occurs, and each GPU hosts exactly one replica.

6. The replication factor of 3 for t5 means it will always occupy 3 out of
the 4 GPUs if possible, leaving one GPU for an additional replica.

This example highlights how the combination of replication factors and
placement order can lead to suboptimal outcomes in Usher’s heuristic ap-
proach. Note also that despite having 4 GPUs, 2 out of 4 models are not
being served at all.

Undefined Order across Groups

Having examined how the heuristic order within a group can lead to sub-
optimal outcomes and potentially prevent some models from being served,
we now turn our attention to a similar issue that can arise due to the order
in which groups of models are placed onto GPUs. As discussed in Section

71

Chapter 5. Placement Policies

Model Batch Size Latency(s) Goodput(rps) Mreq(%) [42] Creq(%) [21]

alexnet 4 0.0014 2801.75 1.66 69.17
8 0.0023 3540.12 2.08 85.97
16 0.0031 5196.69 2.08 85.93
32 0.0053 5990.46 2.80 89.94
64 0.0097 6627.59 3.44 91.95
128 0.0182 7023.69 6.40 93.02

bert 4 0.0341 117.34 3.47 85.89
8 0.0658 121.53 4.06 88.46
16 0.1281 124.88 5.25 91.29
32 0.2439 131.19 7.63 92.90
64 0.4853 131.88 12.40 93.83
128 0.9647 132.68 21.92 94.21

gpt2 4 0.0369 108.28 5.80 91.28
8 0.0732 109.23 10.48 93.05
16 0.1435 111.49 19.85 93.84
32 0.2730 117.21 38.58 94.27

resnet50 4 0.0068 589.78 1.16 87.39
8 0.0096 829.08 1.77 90.83
16 0.0160 998.99 2.70 92.63
32 0.0300 1067.13 4.52 93.58
64 0.0573 1117.12 8.16 93.95
128 0.1113 1149.98 15.45 100.00

t5 4 0.0311 128.74 3.17 97.18
8 0.0580 137.83 4.88 97.49
16 0.1096 146.02 8.15 97.74
32 0.2131 150.19 16.08 97.79
64 0.4211 151.97 29.17 97.89

Table 5.2: Profiled latency, maximum reserved memory capacity and
achieved occupancy for one iteration on a NVIDIA V100

5.2.2, Usher first clusters models into nearly equal-sized groups before plac-
ing them sequentially onto the GPUs. However, neither the paper nor the
code specifies the order in which these groups should be placed. The issue we
present here is independent of whether our implementation of the clustering
algorithm is correct.

Consider a fixed-size cluster with 4 GPUs. We have three vision models
resnet50, vgg19, mobilenet v2 and two language models gpt2 and bert to
be served. Each model has an expected request arrival rate of 400 requests
per second (req/s) and a Service Level Objective (SLO) of 300 ms. Following
the paper’s specifications, we assume a maximum group size of 4. Figure
5.6 illustrates the resulting placement.

Based on our profiling measures, the clustering algorithm returns two
groups: the first consisting of bert, resnet50, gpt2 and the second group
consisting of vgg19, mobilenet v2. Another iteration of the clustering al-
gorithm would have led to a group size of 5, which is not allowed given
the maximum group size of 4. It is unclear which group should be placed

72

Chapter 5. Placement Policies

Figure 5.7: Model placement from Usher for alexnet, resnet50,
mobilenet v2 and bert with an expected arrival rate of 500 req/s and an
SLO of 200ms. The x-axis shows the achieved occupancy.

first, thereby having access to all the GPUs. Our implementation begins by
placing the group bert, resnet50, gpt2 onto the GPUs first.

Conducting a similar analysis as in the previous section, using the values
from Table 5.2, one can verify that both bert and gpt2 require a replication
factor of 4 to meet their load. Given that the entire load of resnet50 can be
served with a single replica and no colocation takes place, the remaining 3
GPUs will be occupied by bert (which leads to a higher expected goodput
than gpt2). As a consequence, all GPUs are occupied before the second
group can even be placed.

However, the reader may convince themselves that any placement in
which the group vgg19, mobilenet v2 would have been placed first would
have resulted in a higher expected goodput.

This example highlights the significance of the order in which groups are
placed across GPUs and how it can impact the overall system goodput. This
example also shows that there is no notion of fairness between the models
in the case of a fixed size cluster.

5.4.2 Problematic Replication Factor Multiplier

In Section 5.2.2, we discussed the ambiguities surrounding the replication
factor of a model. To recap, the model’s replication factor is chosen from
the set {clm · i | clm · i ≤ num gpus, i ∈ {1, ..., 6}}, where clm is the minimum
number of GPUs needed to serve a model’s entire load within the SLO using
the highest possible batch size.

Consider once again a fixed-size cluster with 4 GPUs. We have three
vision models resnet50, alexnet, mobilenet v2 and bert as our only lan-
guage model to be served. All models have an expected request arrival rate
of 500 requests per second (different from the previous settings) and an SLO
of 200 ms. The resulting model placement is shown in Figure 5.7.

Notably, bert is not being served, even though GPU 3 remains idle.
From Table 5.2, we can see that the highest batch size that bert can run
without violating the SLO is 16. This batch size results in an expected

73

Chapter 5. Placement Policies

goodput of 124.88 req/s. Consequently, 5 replicas with batch size 16 would
be required to satisfy the entire load of bert within the SLO. Given that our
fixed-size cluster has only 4 GPUs, the set of replication factors to choose
from for bert is empty.

According to our understanding of the Usher algorithm, in such a case,
it determines that it will not be able to serve the workload of bert under
any circumstances and therefore decides not to serve it at all. The result
is that some GPUs might be left unused even though there is work to be
scheduled on them. Note that if the expected goodput was only 0.12 req/s
higher, Usher would have chosen to server bert as 4 replicas would have
been sufficient.

In section 5.4.3, we propose to eliminate the replication factor multiplier
clm. This modification should prevent us from encountering this problem
and allow for more flexible and efficient resource allocation, particularly in
scenarios where partial serving of a model’s workload is preferable to not
serving it at all.

5.4.3 An Mixed Integer Linear Programming (MILP) Ap-
proach

To address the issues discussed in sections 5.4.1 and 5.4.2 regarding the
placement order of models and the replication multiplier, we propose a
Mixed Integer Linear Programming (MILP) approach based on the following
modifications:

1. We eliminate group ordering and instead place all models together,
resolving issues related to group placement priority.

2. We remove the heuristic order of placing models sequentially. Our
MILP-based optimizer will return the global optimum in expected
goodput, independent of any underlying heuristic order.

3. We remove the replication factor multiplier clm, making it preferable to
serve a model with one replica (even if not serving the entire workload)
rather than not serving the model at all. This ensures that no GPUs
are left unused as long as there is work to be scheduled on them.

Problem Definition

Table 5.3 introduces the notation for our solver. Note that the wm variable
is of type float, making this a mixed integer programming problem. Our
solver aims to maximize the overall expected cluster goodput, similar to
Usher. The goodput that a single model may contribute to this overall
cluster goodput cannot exceed the model’s actual expected arrival request
rate. Thus, the objective of our solver can be expressed as:

74

Chapter 5. Placement Policies

Notation Definition Variable Type

M The set of all models to serve
Bm The set of all possible batch sizes for a model m
G The set of all GPUs in the cluster
max repm The maximum replication factor of a model m
goodputm,b Expected goodput of model m with batch size b float

rpsm Expected request arrival rate for model m float

mreqm,b Memory requirement of model m with batch size b float

creqm,b Compute requirement of model m with batch size b float

xm,b,g Model m runs with batch size b on GPU g binary

ym,b Model m runs with batch size b binary

wm Auxiliary variable to linearize min function for model m float

Table 5.3: Variable definition for solving the Usher placement with a Mixed
Integer Linear Programming Solver considering a homogeneous GPU cluster.

max
∑
m

min(rpsm, goodputm)

This objective criterion is non-linear due to the min function. We there-
fore introduce an auxiliary variable wm to linearize the objective:

max
∑
m

wm

The objective criteria is subject to the following constraints for all models
m. The goodput a single model m can contribute cannot be higher than its
expected arrival rate.

wm ≤ rpsm

wm ≤
∑
b∈Bm

goodputm,b

The batch size for a model m should be the same across all model replicas∑
b∈Bm

ym,b ≤ 1

If a model m is placed on any GPU g with batch size b, the corresponding
batch size b must be activated for model m

xm,b,g ≤ ym,b

For each GPU g, the sum of Creq and Mreq of all models m and corre-
sponding batch size b cannot exceed 100%∑

m∈M,b∈Bm

creqm,b · xm,b,g ≤ 100

∑
m∈M,b∈Bm

mreqm,b · xm,b,g ≤ 100

75

Chapter 5. Placement Policies

For each GPU g and each model m, the model m may be placed at most
once on GPU g ∑

b∈Mb

xm,b,g ≤ 1

Each model m must not exceed its maximum replication factor∑
m∈M,b∈Mb,g∈G

xm,b,g ≤ max repm

The above defined MILP problem could be extended to include a hetero-
geneous GPU cluster setting. In that case, the variables goodputm,b, creqm,b,
and mreqm,b would need to be extended by a third GPU dimension. Note
that this problem definition is agnostic to which concrete metrics we use for
the Creq or Mreq. This means that we can combine the MILP solver with
any of the metrics that we have introduced in Section 5.3 and beyond.

We have implemented our MILP solver in Python based on the PuLP
solver [36].

Revisiting the suboptimal Usher placements

(a) Usher (b) MILP solver

Figure 5.8: Model placement for alexnet, resnet50, mobilenet v2 and
bert with an expected arrival rate of 500 req/s and an SLO of 200ms. The
x-axis shows the achieved occupancy.

Figure 5.8 revisits the model placement from section 5.4.1 which was
suboptimal due to the heuristic placement order within a group. The setting
remains unchanged, and both policies use the achieved occupancy as Creq.
In Figure 5.8a we see the previously analyzed Usher placement, which results
in an expected goodput of 800 req/s. Meanwhile, Figure 5.8b shows the
model placement obtained using the MILP solver-based placement policy,
yielding an expected goodput of 1092.04 req/s. Unlike Usher, the MILP
solver does not rely on any fixed order and instead places model replicas to
maximize the expected goodput. Note the different choice of batch sizes as
well between both policies.

Figure 5.9 similarly revisits the model placement but focuses on the
suboptimal placement order across groups, as described in section 5.4.1.
Usher’s group-wise placement, shown in Figure 5.9a leads to an expected

76

Chapter 5. Placement Policies

(a) Usher (b) MILP solver

Figure 5.9: Model placement for alexnet, bert, gpt2, resnet50 and vgg19

each having an expected request arrival rate of 400 requests per seconds and
an SLO of 300ms. The x-axis shows the achieved occupancy.

goodput of 793.57 req/s. In contrast, Figure 5.9b depicts the MILP solver-
based placement, which results in a substantially higher goodput of 1331.19
req/s. Unlike Usher, the MILP solver places all models at once rather than
in groups.

(a) Usher (b) MILP solver

Figure 5.10: Model placement for alexnet, resnet50, mobilenet v2 and
bert with an expected arrival rate of 500 req/s and an SLO of 200ms. The
x-axis shows the achieved occupancy.

Finally, Figure 5.10 revisits the placement issue related to the replication
factor multiplier for bert, covered in section 5.4.2. In the Usher placement
shown in Figure 5.10a one GPU remains idle due to the multiplier prevent-
ing bert from being scheduled. The MILP solver-based placement in Figure
5.10b however, uses all available GPUs, ignoring the replication factor mul-
tiplier and ensuring that resources are fully utilized wherever possible.

Downsides of the MILP

While our proposed Mixed Integer Linear Programming (MILP) approach
addresses several challenges identified in the Usher algorithm, it is not with-
out its own limitations. The significance of these limitations may vary de-
pending on the specific criteria prioritized by users.

One notable drawback of our MILP solver is its lack of inherent fairness
considerations. The solver may favor certain models over others based on
their potential contribution to overall goodput. Models with higher expected
arrival rates or those that achieve high expected goodput for their batch

77

Chapter 5. Placement Policies

sizes will be prioritized when the cluster cannot serve the entire load of all
models. This bias could result in some models being completely excluded
from service. This limitation raises broader questions about what guarantees
a cluster should provide. We will not further discuss this topic at this point
and briefly revisit it in chapter 7.

The solver also has no knowledge over which batch sizes and replication
factors to favor. Several configurations might result in the same maximum
expected goodput. The solver will return one of them. We will see in chapter
6 that this choice may not always be ideal.

Another significant concern is the computational complexity of the solver.
Mixed Integer Programming optimization is known to be NP-complete, with
complexity growing exponentially in relation to the number of constraints
and decision variables. Consequently, these factors need to be kept to a
minimum for practical implementation. Our use of MILP in this context
was primarily to evaluate the effects of removing heuristic orders and the
replication factor multiplier. For the purposes of our evaluation, we consider
this a reasonable approach, even though it may not be a scalable one for
larger systems or more complex scenarios.

78

Chapter 6

Evaluation

This chapter presents a series of experiments that we have conducted in order
to compare different placement policies to each other. Section 6.1 defines the
evaluation environment as well as the different placement policies used for
evaluation. Section 6.2 evaluates the effect on different placement policies
when successively granting them more GPUs. We conclude this chapter by
section 6.3, where we analyze the effect when increasing the load on the
cluster for different Service Level Objectives.

6.1 Evaluation Environment

This section outlines the environment used to conduct the experiments in
this study. It is organized as follows: Section 6.1.1 describes the machine
configuration, Section 6.1.2 introduces the models used in the evaluation,
and Section 6.1.3 lists the placement policies assessed during the experi-
ments. Section 6.1.4 introduces the goodput metric which serves as the
primary evaluation criterion, and finally, Section 6.1.5 deatils the client be-
havior.

6.1.1 Machine Setup

The experimental environment for this study is detailed in Table 6.1. As
previously discussed in Section 5.1.4, we encountered compatibility issues be-
tween the NVIDIA Nsight Compute profiler and the NVIDIA Multi-Process
Service for the profiling process of iGniter. This necessitated the use of an
older NVIDIA GPU driver version, which subsequently required us to em-
ploy earlier versions of the operating system, profilers, and CUDA to ensure
backward compatibility. It is important to note that this modified setup was
exclusively applied to the iGniter nodes, while the node VMs of all other
policies and the cluster controller VMs adhered to the general setup.

All experiments were conducted within the Google Cloud Platform (GCP)

79

Chapter 6. Evaluation

General Setup iGniter

OS Ubuntu 22.04 Ubuntu 20.04
Machine Type [10] n1-standard-16 n1-standard-16
Number vCPUs 16 16
Number of Cores 8 8
Memory 60GB 60GB
CPU Platform Intel Syklake Intel Skylake
NVIDIA GPU Driver 550.54.15 470.256.02
NVIDIA Nsight Systems [28] 2023.4.4.54 2022.4.2.1
NVIDIA Nsight Compute [26] 2024.1.0.0 2022.3.0.0
GPU Type Tesla V100-SXM2-16GB Tesla V100-SXM2-16GB
Python 3.10.12 3.10.15
Torch 2.4 2.4
Torchvision 0.19.0 0.19.0
CUDA 12.4.0 11.8.0
cuDNN 9.1.0 9.1.0

Table 6.1: Evaluation Machine Setup

environment. We utilized separate VMs for the nodes and the cluster-level
components. The VM hosting the cluster-level components was configured
without any GPUs attached. For network consistency and performance, all
VMs were integrated into a Virtual Private Cloud (VPC) [11] within the
same Availability Zone (us-central1-c). To quantify the network perfor-
mance within our experimental setup, we conducted measurements using
iperf3 [18] between two distinct VMs in the us-central1-c zone, both re-
siding within the VPC. These tests revealed an average network bandwidth
of 16.6 Gbps. Additionally, we measured the network latency between these
VMs, observing an average ping latency of 0.322 ms.

6.1.2 Models and Input Data used for Evaluation

This section specifies the models and corresponding input data employed in
our evaluation process. We categorize our models into two primary groups:
vision models for object detection and language models for sentence classi-
fication.

Vision Models for Object Detection

Table 6.2 presents an complete list of the vision models utilized in this
study. These models are loaded from torchvision [50] without any pre-
trained weights. For each model, we conduct object detection across 1000
classes using randomly generated input data with dimensions 3× 224× 224.
As part of serving the client requests, we apply an argmax function to the
probability tensor, returning only the predicted class label to the client.

80

Chapter 6. Evaluation

Model Num Params

Alexnet [41] 61.1M
DenseNet121 [43] 8.0M
EfficientNet-B7 [44] 66.3M
Inception-V3 [45] 27.2M
MobileNet-V2 [46] 3.5M
ResNet50 [48] 25.6M
VGG19 [49] 143.7M

Table 6.2: Vision Models used for Object Detection

Language Models for Sentence Classification

Model Num Params Weights Vocab Size

BERT [2] 110M bert-base-uncased 30522
BLOOM-560 [3] 560M bigscience/bloom-560m 250680
GPT2 [15] 1.5B gpt2 50257
T5 [52] 50M t5-small 32000
XLNet [57] 110M xlnet-base-cased 32000

Table 6.3: Language Models used for Sequence Classification

The language models employed in our evaluation are listed in Table 6.3.
These models are imported from HuggingFace Transformers [16]. The ta-
ble provides both the pre-trained weights utilized and the vocabulary size
for each model. Our evaluation process involves performing sequence clas-
sification on input sequences of 512 tokens, with the input data randomly
generated from the model’s vocabulary. Similar to the object detection task,
we apply an argmax function to the probability tensor and return only the
predicted label to the client.

6.1.3 Placement Policies used for Evaluations

Several placement policies have been used as part of our evaluation. Each
of them is defined below:

• iGniter: This policy represents our original implementation of the
iGniter placement strategy, incorporating our updated profiled model
and hardware coefficients. The worker nodes in this implementation
use a worker that utilizes multiple streams to overlap data copying
and computation of independent requests, while also setting the MPS
share to limit the set of Streaming Multiprocessors available to the
dispatcher.

81

Chapter 6. Evaluation

• Usher: This is the original Usher placement policy based on our un-
derstanding of the paper. It utilizes the maximum achieved occupancy
for the lifetime of the model as the Creq metric and torch.cuda.max memory reserved

as theMreq metric. The worker nodes in this implementation also em-
ploy streaming and set the MPS share. As stated in the Usher paper
we use a maximum group size of 4 models per group in our clustering
algorithm.

• WAO-Usher This policy, is a variant of the Usher implementation
that employs weighted average achieved occupancy (Section 5.3.1) as
the Creq metric. It maintains the use of torch.cuda.max memory reserved

as the Mreq metric and implements both streaming and MPS share
configuration at the worker level. It also uses a desired group size of
4 models per group in the clustering algorithm.

• AO-MILP This policy utilizes a Mixed Integer Linear Programming
Solver (Section 5.4.3) for model placement on GPUs. It employs
achieved occupancy as Creq and torch.cuda.max memory reserved

as Mreq. While it implements streaming at the worker level, it does
not configure MPS share, allowing multiple workers to execute con-
currently on the same GPU while sharing the same set of Streaming
Multiprocessors.

• WSM-MILP This policy shares the underlying implementation of
AO-MILP but utilizes weighted SM Utilization (Section 5.3.2) as the
Creq metric. It maintains the use of torch.cuda.max memory reserved

as the Mreq metric and implements streaming at the worker level
without setting the MPS share.

6.1.4 Goodput as Evaluation Metric

To assess the efficacy of the various placement policies, we employ good-
put as our primary evaluation metric. Goodput is defined as the number
of requests per second that a cluster can successfully process while adher-
ing to a specified Service Level Objective (SLO). This metric is distinct
from traditional throughput measurements in that it incorporates both the
quantitative aspect of request processing and the qualitative dimension of
service quality. For a request to be considered valid and contribute to the
goodput, its end-to-end latency must not exceed the predetermined SLO.
Consequently, the goodput of a system is always less than or equal to its
throughput.

6.1.5 Clients

In our experimental setup, we employ a one-to-one mapping between clients
and models. For each model under evaluation, a dedicated client is instan-

82

Chapter 6. Evaluation

tiated with the following parameters:

1. Total number of requests to submit

2. Target submission rate (requests per second)

3. Service Level Objective (SLO) in milliseconds

The client operates by submitting request exclusively for its assigned model
at the specified target rate until the total number of requests is exhausted.
The client sender process operates asynchronously, submitting requests with-
out waiting for the results of previous submissions. For a request to be
considered valid, its end-to-end latency must be below the respective SLO.

To facilitate reproducibility across experimental runs, we implement de-
terministic request submission profiles by setting a fixed seed for each client.
This approach allows us to maintain consistency in the request patterns, en-
abling more accurate comparisons between different placement policies and
system configurations.

Prior to each experiment, the clients always submit a number of requests,
not included in the total number of requests to be submitted, for a specified
duration, in order to warm up the system.

6.2 Limiting the number of GPUs

This section presents our experimental findings on the performance of var-
ious placement policies as we incrementally increase the number of GPUs
available to the cluster. We conduct two distinct experiments: Section 6.2.1
focuses exclusively on vision models, while Section 6.2.2 examines a hetero-
geneous workload comprising both vision and language models.

6.2.1 Limiting Number of GPUs with Vision Models

Experimental Setup

For this experiment, we utilize five vision models: alexnet, densenet121,
efficientnet b7, resnet50, and vgg19. Each model is subjected to a
workload of 4000 requests with a target submission rate of 500 requests
per second. We establish a Service Level Objective (SLO) of 200ms for all
models.

Initially, we determined that the Usher policy requires six GPUs to fully
serve this workload within the specified SLOs. Usher uses one replica for
each model, except for efficientnet b7 it uses two as no batch size can
serve the entire workload with a single replica. Figure 6.5a shows the cor-
responding placement. Given that Usher does not permit colocation when
using achieved occupancy as Creq, this six-GPU configuration serves as an
upper bound for our experiments. Our evaluation begins with a single-GPU

83

Chapter 6. Evaluation

cluster and incrementally adds one GPU per iteration, up to a maximum of
six GPUs. This approach allows us to analyze the potential for achieving
comparable goodput to the six-GPU Usher configuration with fewer GPUs,
thereby exploring the trade-off between cluster performance and resource
cost.

We employ two Virtual Machines (VMs) for this experiment. The first
VM hosts all cluster-level components, while the second VM operates a node
with eight NVIDIA V100 GPUs attached. We use the CUDA VISIBLE DEVICES

variable in order to limit the number of GPUs that can be used in each iter-
ation. Both VMs adhere to the configuration detailed in Section 6.1.1, with
the exception of the iGniter setup, which utilizes a distinct configuration for
the node-running VM.

Figure 6.1: Achieved Goodput in req/s for five vision models on a cluster of
up to six V100 GPUs

Results and Analysis

Figure 6.1 illustrates the experimental results, showing the achieved goodput
in requests per second for each policy across varying numbers of GPUs. Each
bar is segmented to show the individual contributions of each model to the
overall goodput. The rightmost stacked bar represents the ideal goodput
achievable if all requests are processed within their respective SLOs. Its
segments correspond to each model’s achieved target submission rate. We
will first provide an analysis on the high-level trends of this experiment and
focus on a series of specific scenarios after that.

84

Chapter 6. Evaluation

1. Usher demonstrates the best performance when allocated all six GPUs,
achieving the highest goodput among all evaluated policies and ap-
proaching the ideal scenario.

2. WAO-Usher shows no significant improvement with additional GPUs,
suggesting that weighted achieved occupancy is not an effective metric
for Creq.

3. AO-MILP outperforms Usher, particularly for cluster sizes of three and
four GPUs, indicating that the MILP solver can effectively circumvent
suboptimal placements resulting from Usher’s heuristic ordering.

4. WSM-MILP successfully colocates alexnet and resnet50 on a single
GPU. Moreover, it achieves goodput levels with four and five GPUs
that are competitive to Usher’s performance with six GPUs, present-
ing a cost-effective alternative for users willing to accept a marginal
decrease in cluster performance.

5. iGniter demonstrates minimal improvement with each additional GPU,
processing small quantities of requests for each model but maintaining
overall poor performance.

We will next take a deeper dive into some very specific scenarios. To
not overload this report, we have compiled a representative list of these
scenarios meant to identify further shortcomings of the different policies as
well as decisions that are crucial to the cluster’s performance. We refer the
reader to Table A.1 in the Appendix that contains crucial metrics that will
be used throughout the whole analysis. For space reasons we have decided
to put the table into the Appendix.

Observation 1: Usher’s goodput increase from two to four GPUs

Observation Usher’s goodput only marginally increases when going from
two to three GPUs, but increases significantly when going from three to four
GPUs. Figure 6.2 shows Usher’s placement for two, three and four GPUs.
With each additional GPU that is added to the cluster, Usher can place
one more replica on the new GPU. Its goodput however only marginally
improves when going from two to three GPUs despite the addition of the
efficientnet b7 replica on GPU 2. According to our profiling results (Ta-
ble A.1 in the Appendix), efficientnet b7 has an expected goodput of
344.1 req/s for batch size 16. This is insufficient to meet the target sub-
mission rate of 500 req/s, resulting in queue buildup in the worker’s input
buffer due to the mismatch between incoming request rate and processing
capacity. The situation improves with four GPUs. Usher now deploys two
replicas of efficientnet b7, each with a batch size of 8 and an expected
goodput of 260.14 req/s per replica. With each replica handling an expected

85

Chapter 6. Evaluation

arrival rate of 250 req/s, queuing delays are reduced, and most requests can
be processed within their specified SLO.

Key Takeaway Having multiple replicas of a model (possibly with smaller
batch sizes) can help reduce queuing delays, while keeping latency within
the SLO.

(a) 2 GPUs (b) 3 GPUs (c) 4 GPUs

Figure 6.2: Usher Model Placement

Observation 2: WAO-Usher performs poorly compared to other
baselines

Observation WAO-Usher’s overall goodput remains stagnant despite the
addition of GPUs to the cluster. Figure 6.3 shows the model placement for
WAO-Usher with four GPUs. We observe that only three out of four GPUs
are used. WAO-Usher employs this same placement policy for any cluster
of more than three GPUs.

Figure 6.3: Model Placement for WAO-Usher for four GPUs

An examination of inference latencies on GPU 0 for the entire time of
the experiment (Figure 6.4a) reveals that resnet50 with batch size 4 suffers
from an approximate 4x increase in inference latency compared to its profiled
inference latency of 6.8ms when run in isolation with access to all SMs on
the GPU (Table A.1). The fact that the inference latency of resnet50 only
slightly decreases after vgg19 and alexnet have terminated, suggests that
the main reason for resnet50’s high inference latency is due to it being
constrained only to a small set of SMs on the GPU given its small Creq
share of 17.55%.

As a result, we conducted the exact same experiment, this time without
setting MPS shares for both Usher and WAO-Usher. The overall results of

86

Chapter 6. Evaluation

this experiment are presented in Figure A.1 of the Appendix. Figure 6.4b
illustrates the inference latency on GPU 0 for this modified setup.

Our findings indicate that while the models are no longer constrained to
specific SM sets, resnet50 and alexnet experience significant interference.
The inference latency of resnet50 decreases substantially after all other
models have completed execution, allowing it to utilize all available SMs on
the GPU. Although not setting MPS shares for WAO-Usher resulted in a
slight improvements in overall goodput, its aggressive colocation strategy
led to severe inter-model interference. Consequently, the overall goodput of
WAO-Usher remains sub optimal compared to other evaluated policies.

Key Takeaway Using the weighted achieved occupancy as a metric leads
to suboptimal decisions that greatly harm models’ latency and throughput.
This is due to underestimating the amount of resources the workloads need,
leading either to constraining models to only a few SMs, or high interference
upon free SM sharing

(a) setting MPS share (b) not setting MPS share

Figure 6.4: Inference latency for WAO-Usher on GPU 0

Observation 3: AO-MILP performs worse than Usher on six GPUs

Observation Despite the introduction of AO-MILP as an enhancement
over Usher to mitigate suboptimal outcomes resulting from heuristic model
placements, our experimental results reveal that AO-MILP performs worse
than Usher on six GPUs. Both policies employ the achieved occupancy (AO)
as the Creq metric, yet AO-MILP’s overall goodput is inferior to Usher’s,
particularly for efficientnet b7.

Model Placement Comparison Figure 6.5 illustrates the divergence in
model placement strategies between the two policies. The main difference
lies in the batch sizes selected for efficientnet b7 (8 for Usher vs. 64 for
AO-MILP) and resnet50 (4 for Usher vs. 64 for AO-MILP).

87

Chapter 6. Evaluation

(a) Usher (b) AO-MILP

Figure 6.5: Model Placement on six GPUs

(a) Latency Breakdown (b) E2E latency CDF

(c) Batch Size

Figure 6.6: Comparing AO-ILP and Usher for efficientnet b7

Latency Breakdown Analysis To analyze where the performance dif-
ference comes from, we conducted a detailed latency breakdown analysis, as
depicted in Figure 6.6a. This visualization breaks the end-to-end latency of
each request into distinct segments, presenting the 95th percentile latency
for each segment. The most important segments are defined below:

• Router to Node is the time from request arriving at the Router
(Section 4.3.3) until the reception at the Node Controller Server (Sec-
tion 4.4.1). This includes the batch build time as well as the network
transmission latency from the router to the node.

• Node to Worker is the time spent in a worker’s input queue awaiting
GPU processing

• Worker Processing is the time for request processing by the worker.
This time includes GPU inference but excludes result transmission to

88

Chapter 6. Evaluation

the Result Server (Section 4.3.4).

The plot reveals that Usher’s requests mainly experience delays in the worker’s
queue, indicating minor queue buildup at the worker level. On the other
hand, AO-MILP’s requests exhibit longer Router to Node transition times
and extended Worker Processing durations, with negligible worker queue
delays.

Batch Size Impact The performance divergence can be attributed to
the separate batch sizes used by each policy for efficientnet b7. AO-
MILP’s larger batch size (64 vs. 8) results in extended batch formation and
transmission times. Figure 6.6c demonstrates that AO-MILP frequently fails
to achieve its target batch size of 64, instead dispatching batches due to the
MAX WAIT TIMEOUT (set at 100ms).

Moreover, larger batch sizes result in higher GPU processing times. From
Table A.1, we observe that efficientnet b7 inference latency increases
from 0.0308s for batch size 8 to 0.1609s for batch size 64. The combination of
prolonged batch formation and inference times renders AO-MILP incapable
of meeting the 200ms SLO under these conditions.

Throughput vs. Goodput Interestingly, both placements achieve nearly
identical throughput for efficientnet b7 (425.75 req/s for Usher vs. 425.25
req/s for AO-MILP). However, their goodput metrics diverge significantly:
360.61 req/s for Usher compared to 143.73 req/s for AO-MILP. Figure 6.6b
visualizes this discrepancy. It shows the cumulative distribution function
(CDF) of end-to-end latencies for both policies. The CDF curve for AO-
MILP is shifted more to the right, since individual requests take longer to
complete. As a result fewer request meet the SLO.

Key takeaway Large batch sizes can be detrimental for goodput due to
the extra time needed for batch formation, and transmission times. A system
should accurately model these overheads to make accurate decisions.

Observation 4: WSM-MILP: Successful collocation despite inter-
ference

Observation The WSM-MILP scenario with five GPUs gets closest to the
overall goodput achieved by Usher with six GPUs. This example shows how
successful colocation can be achieved despite a modest level of interference.
Figure 6.7a illustrates the model placement for WSM-MILP. Of particular
interest is the colocation of resnet50 (batch size 4) and alexnet (batch size
4) on GPU 3. It should be reminded that, unlike other policies, WSM-MILP
does not implement MPS share settings at the worker level.

89

Chapter 6. Evaluation

(a) Model Placement (b) Inference Latency on GPU 3

Figure 6.7: WSM-ILP on five GPUs

Figure 6.7b presents the inference latency over time for GPU 3. A com-
parison of the observed inference latency for resnet50 (approximately 8ms)
with its profiled inference latency for batch size 4 (6.8ms) reveals a slight
interference effect. Despite this interference, the worker demonstrates the
capability to process most of the workload within the specified SLO. With an
inference latency of approximately 8ms, the processing rate of the worker for
resnet50 can be estimated at roughly 500 req/s. Given that the achieved
submission rate for resnet50’s worker is 433.34 req/s, the worker’s process-
ing capacity exceeds the achieved arrival rate. A similar analysis can be
conducted for alexnet.

This example underlines that the ability to accurately model interfer-
ence resulting from colocation is crucial for assessing a model’s capacity to
serve its workload effectively. Despite some level of interference, models
can still meet their performance objectives if properly managed. Workers
with processing rates significantly higher than their expected arrival rates
may be able to tolerate a degree of interference while still meeting workload
demands. Conversely, workers operating near their maximum processing
capacity become highly susceptible to even minor interference effects.

Note that despite successful colocation, this model placement is not able
to serve efficientnet b7 effectively due to the same reasons outlined in
the previous scenario.

Key Takeaway The level of interefernce each model can tolerate varies for
each model, depending on its base latency, clients’ request rates, and SLOs.
Using WSM as a model’s Creq can model interference more accurately than
WAO.

90

Chapter 6. Evaluation

Observation 5: iGniter performs poorly when using more than
three GPUs

Observation iGniter’s overall goodput is fairly poor compared to policies
such as WSM-MILP or AO-MILP. With the exception of densenet121, all
models contribute to the total goodput, yet they all fail of reaching their
individual ideal performance.

Figure 6.8: Model Placement for iGniter on six GPUs.

Figure 6.8 illustrates iGniter’s model placement on six GPUs. Accord-
ing to the iGniter policy, five GPUs are required to serve the entire work-
load within the specified SLO. It is worth recalling that we have trans-
formed iGniter into a best-effort policy (Section 5.1.5). iGniter first creates
a model placement plan independent of the available GPU count in the clus-
ter. Once the placement is determined, it is mapped onto the GPUs until
either all GPUs are utilized or all replicas are placed. In this experiment,
with one GPU, we begin by placing vgg19 and alexnet on GPU 0. Given
two GPUs, we can additionally place densenet121, resnet50, and a replica
of efficientnet b7 on GPU 2, and so forth.

Unlike other policies examined thus far, iGniter may use different batch
sizes across various model replicas, as is the case for efficientnet b7. As
specified in Section 4.3.3, the router distributes batches across model replicas
in a round-robin fashion. Consequently, each replica receives a portion of the
total workload relative to its batch size. In this case, the efficientnet b7

replica on GPU 1 receives 9
24 of the load, while the other three replicas each

receive 5
24 of the entire load.

Figure 6.9a presents the end-to-end latency CDF for each model, trun-
cated at 0.6s for readability. The CDFs for alexnet, resnet50, and densenet121
demonstrate that no significant queuing occurs at their respective workers
in the cluster. Nevertheless, a substantial proportion of requests still violate
the 200ms SLO, once more primarily due to the large batch sizes chosen for
these models. For efficientnet b7 we see how the load shares translate
into the CDF. Approximately 62.5% of requests are served within 100ms,
corresponding to the combined share of the three efficientnet b7 replicas

91

Chapter 6. Evaluation

(a) End-to-end latency CDF (b) Inference latencies on GPU 1

Figure 6.9: iGniter latencies on six GPUs

running in isolation on GPUs 2, 3, and 4. The remaining 37.5% correspond
to the requests served on GPU 1, which experience substantial amounts of
queuing at the worker level due to interference among the colocated models,
as depicted in Figure 6.9b.

Key Takeaway iGniter fails to accurately model interference in all cases,
resulting in large batch sizes which hurt goodput.

Key Insights and Implications

Here we generalize the key insights mentioned above:

1. The choice of batch sizes is crucial for inference. While larger batch
sizes may enhance GPU utilization in training scenarios, they can be
detrimental in inference contexts due to SLO constraints.

2. Load balancing the workload across multiple replicas with smaller
batch sizes can help reduce queuing delays (compared to using large
batch sizes).

3. Any placement policy that will estimate the goodput of a cluster with-
out modelling intra-cluster queuing delays, will prove ineffective.

4. In order to be able to predict whether a worker is able to serve its
workload, a placement policy must be able to model the interference
between collocated models. Profiling models in isolation and summing
up their individual results is insufficient to quantify whether there will
be interference or not.

5. Cluster parameters like MAX WAIT TIME must be chosen with care.

6. A limitation of the MILP solver is its inability to differentiate between
batch sizes that result in equivalent cluster goodput. Its repeated
choice of batch size 64 for efficientnet b7 proved to be ineffective,
while smaller batch sizes were possible.

92

Chapter 6. Evaluation

We conducted the same set of experiments with a target submission rate
of 1000 requests per second (req/s) for each model, maintaining the Service
Level Objective (SLO) at 200 ms per model. In this scenario, the cluster
size was scaled up to 8 GPUs. However, we have chosen not to provide a
detailed analysis of these results, as they do not provide any significant new
insights. The reader is invited to consult the corresponding plot in Figure
A.2 of the Appendix for further information.

6.2.2 Limiting the Number of GPUs for Vision and Lan-
guage Models

This experiment evaluates the different scheduling policies when language
models are also considered. We used two vision models (resnet50 and
mobilenet v2) and two language models (bert and gpt2). Each model
processed 2400 requests at a target submission rate of 300 req/s, with a
Service Level Objective (SLO) of 300ms for all models.

Profiling results revealed that serving language models is significantly
more resource-intensive than vision models. Consequently, we adjusted the
target submission rate and increased the SLO. To ensure fair comparison,
we maintained consistent load across all models, preventing some models
to be preferred over others based on goodput contribution. We excluded
AO-MILP from this analysis as it does not colocate models.

Figure 6.10: Achieved Goodput in req/s for language and vision models in
a cluster of up to eight V100 GPUs

Figure 6.10 illustrates the results of the experiment. iGniter demon-
strates strong performance, achieving near-ideal overall cluster goodput with
just six GPUs. In contrast, WAO-Usher shows minimal improvement be-

93

Chapter 6. Evaluation

yond a single GPU, maintaining poor performance. WSM-MILP presents
competitive overall goodput in clusters exceeding five GPUs. Once again
we have chosen a non-exhaustive list of specific scenarios that reveal key
insights into cluster performance under different policies.

Observation 1: WAO-Usher performs poorly

Observation Figure 6.11a shows the model placement of WAO-Usher in
a four-GPU cluster. WAO-Usher predicts three GPUs to be sufficient to
satisfy the entire workload, colocating bert and gpt2 on each GPU. Figure
6.11b presents the inference latency over time on GPU 0. As observed in the
previous experiment, aggressive colocation leads to inter-model interference,
that is nicely visible with bert’s latency, which improves as other models
terminate. This example shows that despite the models being constrained
to distinct sets of SM, the models still experience interference not expressed
by the weighted achieved occupancy.

The primary cause of low goodput, however, is the MPS share limiting
available SMs to each model. When bert runs alone on GPU 0 with batch
size 4, its inference latency is approximately 180ms, resulting in an approx-
imate processing rate of 22 req/s per replica. Clearly, three replicas of bert
are insufficient to meet the expected submission rate of 300 req/s.

Key Takeaway WAO underestimates the models’ resource requirements
leading to aggressive colocation. Even when constraining the models to
different SMs, there is still interference for shared resources such as L2 cache
and GPU memory.

(a) Model Placement (b) Inference Latency on GPU 0

Figure 6.11: WAO-Usher on four GPUs

Observation 2: With five GPUs, WSM-ILP performs significantly
worse than Usher

Observation At a cluster size of five GPUs, WSM-MILP demonstrates
significantly inferior performance compared to Usher. Figure 6.12 illustrates

94

Chapter 6. Evaluation

the corresponding placements for both policies. Usher allocates three repli-
cas of gpt2 on GPUs 0 to 2. In contrast, WSM-MILP colocates resnet50
and mobilenet v2 on GPU 4, utilizing the remaining four GPUs to place
two replicas each of bert and gpt2. Neither bert nor gpt2 make significant
contributions to WSM-MILP’s overall goodput.

(a) Usher (b) WSM-MILP

Figure 6.12: Model Placements on five GPUs

Model Batch Size Latency Estimated Goodput weighted SM Utilization
(s) (req/s) (%)

bert 4 0.0341 117.34 96.82
8 0.0658 121.53 98.92
16 0.1281 124.88 99.51
32 0.2439 131.19 99.77

gpt2 4 0.0369 108.28 97.73
8 0.0732 109.23 98.84
16 0.1435 111.49 99.55
32 0.2730 117.21 99.77

Table 6.4: Profiled metrics for bert and gpt2 on a NVIDIA V100 GPU.

Table 6.4 summarizes the metrics to understand WSM-MILP’s place-
ment. The table includes only batch sizes with inference latency within
the 300ms SLO. The Estimated Goodput column indicates that at least
three replicas are necessary for both bert and gpt2 to fully serve their load.
Usher achieves this for gpt2, consequently serving most requests within the
SLO. Conversely, WSM-MILP decides to place two replicas each of bert

and gpt2, rather than fully serving one model and placing a single replica of
the other. With two replicas for each model, neither can match the target
submission rate of 300 req/s, resulting in queue buildup at their workers and
most request for bert and gpt2 violating their SLO.

WSM-MILP’s placement is due to optimizing solely for goodput. Given
the 300 req/s target submission rate for both models, placing two replicas
of bert with batch size 32 yields an expected goodput of 2 ·131.19 = 262.38
req/s. Since a model cannot exceed its target submission rate in overall
goodput contribution, a third replica of bert would only contribute 300 −
262.38 = 37.62 req/s. From the MILP optimizer’s point of view, it is more

95

Chapter 6. Evaluation

beneficial of placing a replica for gpt2 with batch size 32, contributing 117.21
req/s to the total goodput. This scenario repeats for the second gpt2 replica.

Figure 6.13 demonstrates how queuing at theWorker (Node to Worker)
decreases for bert and gpt2 as GPUs are added to the cluster. With six
GPUs, WSM-MILP can add the third replica required for gpt2, while bert
requests still violate the SLO. Finally, with seven GPUs, the third bert

replica can be added, allowing WSM-MILP to achieve near-optimal good-
put.

Key Takeaway Trying to maximize overall goodput might not always
lead to optimal performance, especially when the system does not account
for any queuing delays that might harm goodput, and lead to the actual
goodput being significantly worse than the estimated.

Figure 6.13: P95 latency breakdown for bert and gpt2 in the WSM-MILP
placement

Observation 3: iGniter saves GPUs through efficient colocation

Observation With only six GPUs, iGniter demonstrates the capability
to achieve near-optimal goodput across all models. Figure 6.14 illustrates
both the model placement and end-to-end latencies for iGniter in a six-GPU
cluster configuration. Notably, smaller batch sizes are selected for the bert
and gpt2 replicas colocated with mobilenet v2 and resnet50, respectively.
The Cumulative Distribution Functions (CDFs) indicate that, despite colo-
cation, requests for all models are smoothly served within their Service Level
Objective (SLO). The increase in SLO from 200ms to 300ms mitigates the
challenges for mobilenet v2 and resnet50 that we have previously encoun-
tered with larger batch sizes in scenarios with a 200ms SLO.

Note that iGniter’s goodput remains constant when increasing the cluster
size from three to four GPUs. As previously mentioned, iGniter develops
a placement plan designed to serve the entire workload, irrespective of a
specific cluster size. Instead, it aims to minimize the number of GPUs
required to serve the complete load. For instance, when evaluating iGniter
with three GPUs, we apply its six-GPU placement policy and submit the
entire load only to the first three GPUs. Consequently, for some models,
the load exceeds the capacity of the replicas present in the first three GPUs.

96

Chapter 6. Evaluation

(a) Model Placement (b) End-to-end latencies

Figure 6.14: iGniter on six GPUs

Such is the case for gpt2 with a cluster size of three. The first three GPUs
only contain two replicas of gpt2, which are insufficient to handle a target
submission rate of 300 req/s. As a result, most gpt2 requests fail to meet
their SLO. Only with the addition of the third gpt2 replica does the cluster
fully serve all requests within their SLO when adding a fourth GPU to the
cluster. A similar pattern is observed for bert when transitioning from five
to six GPUs.

Key Insights

The cases of iGniter andWSM-MILP have demonstrated that careful coloca-
tion of vision models, or vision models with language models, can effectively
reduce the total number of required GPUs while maintaining high or even
ideal overall goodput compared to placements that exclusively allocate in-
dividual GPUs to model replicas. However, the case of WAO-Usher has un-
derscored the importance of carefully selecting colocation criteria, as overly
aggressive colocation can prove detrimental to overall cluster goodput.

97

Chapter 6. Evaluation

6.3 Changing the RPS and SLO

Our previous experiments have employed specific target submission rates
and Service Level Objectives (SLOs). However, the appropriate selection
of SLOs remains a complex issue, as they are inherently dependent on the
underlying tasks they aim to address, and different clients may associate
varying SLOs with identical tasks. For instance, Usher proposes setting a
model’s SLO at twice the average inference latency of a single request on an
NVIDIA V100 GPU. They report an SLO of 108ms for resnet50, implying
a single inference request time of 54ms. Our profiling, however, indicates an
inference latency of 6.8ms for resnet50 with a batch size of 4 on an NVIDIA
V100 GPU, including data transfer. Following Usher’s approach, we would
set an SLO of approximately 13ms, which appears extremely challenging
to meet given the necessity of routing requests through an entire cluster
network.

We have decided to conduct an experiment designed to evaluate the ef-
fect of different policies in a fixed-size cluster while incrementally increasing
SLOs and target request submission rates. Our experimental setup con-
sists of a 4-GPU cluster running five vision models: alexnet, densenet121,
efficientnet b7, resnet50, and vgg19. We consider SLOs of 150ms,
250ms, and 350ms. For each SLO, we increase the target submission rate
from 1000 req/s to 5000 req/s in increments of 1000 req/s. The total load
is equally distributed among all models.

Global Analysis and Insights

Figure 6.15 illustrates the results of these three experiments. For each fixed
SLO, we plot the total goodput achieved by each policy as we increase the
system load. Each policy’s total achieved goodput is further subdivided into
the goodputs contributed by individual models. The ideal bar for each target
submission rate represents the maximum attainable goodput, corresponding
to the achieved submission rates for each model.

The general trends across all three plots remain very consistent, and
despite increasing the SLO, the goodput of different policies does not signif-
icantly increase across various loads. As the load intensifies, we observe a
diminishing number of models being served and contributing to the overall
goodput of a policy. We have identified several reasons for this phenomenon:

1. Increasing resource demands: As the load for a model increases,
more GPU resources are required to serve the load. Since the evaluated
policies tend to maximize the overall cluster goodput, they tend to
favor models that are less resource-intensive to serve (e.g. alexnet or
densenet121). Heavier models like efficientnet b7 tend to be not
served at all or are not assigned enough processing capacity.

98

Chapter 6. Evaluation

(a) SLO 150ms

(b) SLO 250ms

(c) SLO 350ms

Figure 6.15: Goodput versus Target Submission Rate in a cluster of 4
NVIDIA V100 GPUs.

99

Chapter 6. Evaluation

2. Preference for larger batch sizes: Larger batch sizes are often
preferred over smaller ones as they typically present a higher expected
goodput and are used as a means to meet increased load. However,
we have observed that large batch sizes can be problematic for infer-
ence due to longer batch build times and increased inference latencies.
While the system’s throughput can be increased or at least maintained,
the end-to-end latencies of individual requests increase.

3. Worker-level queuing: Once a model’s load exceeds the processing
capacity of its workers, queuing at the worker level builds up, becoming
detrimental to all requests for that model. Whether the SLO is 150ms
or 350ms does not make a large difference in that case because the
overheads due to queuing are significantly larger.

Figure 6.15 also shows that none of the policies that colocate models
perform well beyond 3000 RPS. For WAO-Usher, we have already seen that
the weighted achieved occupancy is not the appropriate metric, and its ag-
gressive and overly optimistic colocation leads to both interference and in-
efficient use of available resources. We’ll take a closer look to specific cases
of WSM-MILP, AO-MILP and iGniter below.

Observation 1: WSM-MILP Performance for SLO 250ms and Tar-
get Load exceeding 3000 req/s

Observation For the WSM-MILP policy, we observe a consistent pattern
across all three SLOs: the total goodput decreases when the RPS goes from
3000 to 4000, then increases again when the RPS goes from 4000 to 5000. To
understand this behavior, we will examine the model placements for target
loads of 3000, 4000 and 5000 RPS for an SLO of 250ms, illustrated in Figure
6.16.

(a) RPS 3000 (b) RPS 4000 (c) RPS 5000

Figure 6.16: Model Placement for WSM-MILP for an SLO of 250ms

RPS 3000 vs RPS 4000 The placement policy for 3000 req/s and 4000
req/s differs solely in the batch size chosen for vgg19 (16 vs 128). As the
total target submission rate increases from 3000 to 4000 req/s, the target
submission rate for each client rises from 600 req/s to 800 req/s. Con-
sequently, it becomes impossible to serve vgg19 with a single replica, as

100

Chapter 6. Evaluation

evidenced by the profiled values in Table 6.5. The MILP solver thus opts
for a batch size of 128, which yields the highest expected goodput with a
single replica. However, the inference latency of vgg19 with this batch size
is already 199ms. Furthermore, given that the processing capacity of the
vgg19 worker is at most 640 req/s, queuing will inevitably build up, causing
most requests to violate the SLO in the RPS 4000 case.

Model Batch Size Latency Estimated Goodput weighted SM
(s) (req/s) Utilization(%)

alexnet 4 0.0014 2801.75 47.07
8 0.0023 3540.12 83.79
16 0.0031 5196.69 63.49
32 0.0053 5990.46 96.24
64 0.0097 6627.59 91.56
128 0.0182 7023.69 99.0

densenet121 4 0.0154 260.13 13.90
8 0.0169 472.72 21.26
16 0.0192 832.59 54.10
32 0.0335 954.82 86.92
64 0.0629 1017.07 92.30
128 0.1203 1063.81 97.81

efficientnet b7 4 0.0299 133.93 22.47
8 0.0308 260.14 43.55
16 0.0465 344.10 81.32
32 0.0883 362.31 92.35
64 0.1609 397.70 95.81

resnet50 4 0.0068 589.78 36.26
8 0.0096 829.08 70.49
16 0.0160 998.99 87.33
32 0.0300 1067.13 93.90
64 0.0573 1117.12 98.04
128 0.1113 1149.98 99.16

vgg19 4 0.0098 408.51 95.18
8 0.0182 438.65 98.88
16 0.0262 610.11 99.27
32 0.0516 620.69 99.57
64 0.1021 627.01 99.69
128 0.1994 641.97 99.76

Table 6.5: Profiled metrics for alexnet, densenet121, efficientnet b7,
resnet50 and vgg19 on a NVIDIA V100 GPU.

The placement for all other models remains unchanged when increasing
the load from 3000 to 4000 req/s:

• resnet50: Even at a target submission rate of 600 req/s, resnet50
could not be served, as its worker’s processing capacity with batch size
4 is approximately 590 req/s. At 800 req/s, the situation only becomes
worse.

101

Chapter 6. Evaluation

• densenet121: With batch size 16, the densenet121 worker has a pro-
cessing capacity of about 830 req/s. At 600 req/s (RPS 3000), the
worker has some buffer to accommodate moderate interference from
the colocated efficientnet b7. However, at 800 req/s (RPS 4000),
this buffer is minimal, and even slight interference creates worker-level
queuing. Figure 6.17 illustrates this behavior, showing that already
at 600 req/s, the requests experience slight delays in the worker input
queue. This delay drastically increases at 800 req/s. This scenario per-
fectly demonstrates that once queuing builds up, increasing the SLO
by a few tens or hundreds of milliseconds becomes indifferent. Any
policy that fails to account for interference and model the resulting
queuing effects will become ineffective as the system load increases.

• efficientnet b7: When the target submission rate increases from
600 req/s to 800 req/s, the combined processing capacity of the three
efficientnet b7 replicas can no longer meet the workload. Using a
higher batch size would roughly double its weighted SM utilization.
Given the cluster’s 4-GPU limit, this would require sacrificing other
models, which is suboptimal for overall goodput.

Figure 6.17: P95 latency breakdown for densenet121 at a target submission
load of 600 req/s and 800 req/s

RPS 4000 vs RPS 5000 As the target submission rate for each client
further increases from 800 req/s to 1000 req/s, Figure 6.16c shows a sub-
stantial change in model placement. For some models like resnet50, adding
a second replica becomes more attractive. At 800 req/s, the policy used one
replica with batch size 4 and an approximate processing capability of 590
req/s. Any additional replica would only contribute 210 req/s, as the total
processing capacity cannot exceed the target submission rate. However, at
1000 req/s, an additional replica may increase the total cluster goodput by
410 req/s. Consequently, the MILP solver begins to prefer smaller batch
sizes with a higher replication factor. A similar analysis can be conducted
for densenet121. With three replicas of batch size 8, densenet121 has
a comfortable buffer that allows it to accept some interference while most
requests still meet their SLO.

102

Chapter 6. Evaluation

Key Takeaway The WSM-MILP example highlights that any policy fail-
ing to model interference and queuing effects will prove ineffective as the
system load increases. Once more, simply optimizing for total goodput and
considering whether a model’s expected goodput in isolation meets its tar-
get submission load is too simplistic and fails to take crucial factors into
account. Higher inference latencies due to interference must be accounted
for to assess whether a worker can still process its entire load within the
SLOs. The examples of workers operating near maximum processing rate
versus those with more buffer demonstrate how a worker can accommodate
varying levels of interference while still providing SLO guarantees.

Observation 2: AO-MILP: Batch Size Selection Independent of
Target Submission Rate

Observation Except for an SLO of 150ms, AO-MILP’s total goodput
shows a slight increase as the total system load rises. Comparing the model
placements for AO-MILP in Figure 6.18 for tthe 3000 RPS and 5000 RPS
scenario reveals interesting insights into batch size selection. We have chosen
an SLO of 250ms to illustrate this behavior.

(a) RPS 3000 (b) RPS 5000

Figure 6.18: Model Placement for AO-MILP for an SLO of 250ms

AO-MILP selects a batch size of 64 for densenet121 in both scenarios,
independent of the target submission rate. When the target submission rate
is 600 req/s per model, an average of 9.375 batches of size 64 can be built
per second, each requiring an approximate build time of 107ms in the router,
assuming no overheads and a constant arrival rate. This build time exceeds
the MAX WAIT TIME constant set to 100ms in our system, suggesting that
most batches would likely never reach their size of 64 and instead be sent
to the node based on the timeout.

However, with a load of 1000 req/s, an average of 15.625 batches of size
64 can be built per second, again assuming no overheads and constant arrival
rate. The batch build time in this case is approximately 64ms. Thus, we
would expect most batches in this scenario to reach their desired size of 64.
Figure 6.19 shows the batch sizes of densenet121 over time for the 3000
and 5000 RPS scenario at an SLO of 250ms. The plot indeed validates our

103

Chapter 6. Evaluation

calculations.

Figure 6.19: densenet121 batch sizes over time at a target submission load
of 600 req/s and 1000 req/s for AO-MILP

Key Takeaway The batch size selection should consider the model’s re-
quest submission rate in conjunction with the MAX WAIT TIME threshold, as
it can significantly impact how long requests spend at the router. Choosing
an excessively large batch size may never be achieved if the request arrival
rate is too low. Notably, neither the Usher implementations nor any of the
MILP-based implementations account for this crucial aspect. They all as-
sume that arrival rates for all models are always sufficient for all chosen
batch sizes.

GPUs required by iGniter

We have previously already discussed iGniter aims to minimize the total
number of GPUs required to fulfill the entire load. When the SLO is set to
350ms, iGniter requires 2, 3, 8, 8, and 8 GPUs for total loads of 1000, 2000,
3000, 4000, and 5000 requests per second, respectively. Consequently, we are
only evaluating the placement of the first 4 GPUs in this case, providing a
false impression on the effectiveness of iGniter’s placement. However iGniter
still fails to approach the ideal goodput for target submission loads of 1000
and 2000 requests per second where the GPU cluster size is sufficient. We
refer the reader back to section 6.2.1 for the analysis, as the reasons are very
similar.

Extending the Experiment to a Mix of Vision and Language Mod-
els

We have conducted the same experiment with a mix of vision and language
models. Due to space constraints we do not discuss the results here but have
added the resulting plots to the Appendix Section A.2.3.

104

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This work introduced a novel system for scheduling machine learning (ML)
inference workloads across a cluster of GPUs. The system’s modular design
allows for easy exchange of components, particularly the placement policy
and workers, without necessitating changes to the entire architecture. This
flexibility enabled us to evaluate various placement policies through a series
of experiments, leading to the identification of several crucial aspects that
cluster-level schedulers for ML inference must consider.

Our extensive examination of state-of-the-art works, such as Usher and
iGniter, has allowed us to propose adjustments to address some of their
shortcomings and identify new issues. The findings from this research lay
the foundation for several critical decision points, each warranting deeper
investigation. The key aspects are summarized below:

The correct Choice of Metrics Selecting the appropriate combination
of metrics is crucial for quantifying a model’s resource requirements. While
we have focused extensively on compute metrics such as achieved occupancy
and SM utilization, our work has revealed that a model’s requirements can-
not be reduced to a single compute and memory metric. While these are
important, they are insufficient on their own. The challenge lies in identi-
fying the right set of metrics to characterize a model comprehensively. Our
review of related work indicates a lack of consensus in the research com-
munity regarding which metrics are most relevant, with different studies
employing varied metrics tailored to their specific use cases.

Modelling Interference Many policies we reviewed model interference
by summing up metrics that quantify a model’s individual dependence on
certain GPU components, ensuring the total does not exceed the GPU’s
capabilities. However, this approach is too simplistic. Profiling models in

105

Chapter 7. Conclusion and Future Work

isolation and then simply merging their results is insufficient. The complex
architecture of GPUs means that models may interfere at various levels,
including also factors such as arrival rate distribution and total load to be
served. More sophisticated models that combine and relate several of these
layers are needed to accurately predict interference.

Modelling intra-cluster queuing Our research has demonstrated nu-
merous instances where overall goodput was poor due to queuing at differ-
ent parts of the cluster, particularly at the worker and router levels. These
examples highlight the critical importance of avoiding queuing within the
cluster, as it significantly degrades overall performance. Queuing can arise
from various factors, including insufficient processing capacity, interference
through colocation, or suboptimal cluster configuration. Any effective clus-
ter scheduler must account for these situations, especially as system load
increases.

The adequate choice of batch sizes Many issues we encountered were
due to suboptimal batch size selection. While larger batch sizes can increase
utilization and throughput, they also lead to longer inference latencies. In
the context of inference, where requests must be served within strict Service
Level Objectives (SLOs), batch sizes must be chosen carefully and cannot be
arbitrarily large. This requirement significantly differentiates ML inference
schedulers from those designed for training jobs, which are less latency-
critical and primarily aim to maximize throughput.

Different notions of optimality While our work primarily focused on
goodput as a metric for assessing placement policy effectiveness, other prop-
erties must also be considered. Optimizing solely for goodput in fixed-size
clusters can lead to unfairness, favoring lighter models over heavier ones.
However other criteria like fairness matter too as each user expects its model
to be served.

All in all, our evaluations have demonstrated numerous examples where
policies successfully colocated models for given loads and SLOs. This sup-
ports the conclusion that successful colocation is achievable, allowing for
improved GPU utilization and cost reduction.

7.2 Future Work

Although we have not been able to present a novel placement policy, our
system for scheduling ML inference workloads in GPU clusters and our find-
ings lay the foundation for future research in this area. We identify several
key directions for future work:

106

Chapter 7. Conclusion and Future Work

1. Comprehensive Model Characterization: A deeper understand-
ing of model characteristics and corresponding quantitative metrics is
crucial. An extensive analysis of the huge space of metrics trackable
on NVIDIA GPUs would greatly benefit the research community, pro-
viding clarity on which metrics are most relevant beyond the space of
creating effective placement policies.

2. Modelling Interference: Future placement policies should incor-
porate more sophisticated models of interference through colocation
and the resulting queuing effects. This will require a multifaceted ap-
proach considering various GPU architectural aspects and workload
characteristics.

3. Dynamic Placement Policies: Future work should consider dy-
namically integrating feedback from the workers. This could prove of
great value in order to circumvent suboptimal placements. In addition
it should be possible for clients to join and leave the cluster at different
points in time.

4. Extending the current system: The current system is subject to
several improvements. The networking architecture requires revision
to enable direct workload transmission from clients to workers, rather
than generating them at the worker-level. The clients should in ad-
dition become a separate entity living outside the cluster in order to
model more realistic setups.

107

Appendix A

Appendix

A.1 Usher Profiling Results on a V100

Table A.1 shows the profiling profiling results for Usher on a V100 GPU
attached to a n1-standard-16 machine with the Intel Skylake CPU plat-
form in Google Cloud Platform. Missing batch sizes are the result of out-
of-memory errors. The table shows the columns

• Mem Cap(%): is the maximum memory capacity reserved by a
model expressed as a percentage from the total memory capacity of
the GPU measured using torch.cuda.max memory reserved [42]

• Ach Occ(%): is the achieved occupancy [21] measured using NVIDIA
Nsight Compute (NCU)

• wavg Ach Occ(%): is the weighted average achieved occupancy

• wavg SM Util(%): is the weighted average SM utilization

Table A.1: Usher Profiling Results on a V100

Model Batch Latency Throughput Mem Ach wavg Ach wavg SM
Size (s) (req/s) Cap(%) Occ(%) Occ(%) Util(%)

alexnet 4 0.0014 2801.75 1.66 69.17 18.68 47.07
8 0.0023 3540.12 2.08 85.97 29.47 83.79
16 0.0031 5196.69 2.08 85.93 23.98 63.49
32 0.0053 5990.46 2.80 89.94 36.71 96.24
64 0.0097 6627.59 3.44 91.95 40.85 91.56
128 0.0182 7023.69 6.40 93.02 45.96 99.00

bert 4 0.0341 117.34 3.47 85.89 31.83 96.82
8 0.0658 121.53 4.06 88.46 32.63 98.92
16 0.1281 124.88 5.25 91.29 33.72 99.51
32 0.2439 131.19 7.63 92.90 27.22 99.77
64 0.4853 131.88 12.40 93.83 27.47 99.82
128 0.9647 132.68 21.92 94.21 27.61 99.89

Continued on next page

108

Appendix A. Appendix

Table A.1: Usher Profiling Results on a V100

Model Batch Latency Throughput Mem Ach wavg Ach wavg SM
Size (s) (req/s) Cap(%) Occ(%) Occ(%) Util(%)

bloom 560 4 0.1400 28.58 19.95 93.20 40.35 94.72
8 0.2728 29.33 26.29 93.80 41.26 97.66
16 0.5452 29.35 43.73 94.11 42.50 98.82

densenet121 4 0.0154 260.13 0.57 84.97 8.20 13.90
8 0.0169 472.72 0.93 87.28 12.37 21.26
16 0.0192 832.59 1.55 90.79 31.83 54.10
32 0.0335 954.82 2.84 93.61 49.97 86.92
64 0.0629 1017.07 5.27 94.63 55.59 92.30
128 0.1203 1063.81 10.12 94.77 59.10 97.81

efficientnet b7 4 0.0299 133.93 2.45 94.14 13.92 22.47
8 0.0308 260.14 3.54 92.96 28.25 43.55
16 0.0465 344.10 5.69 96.78 52.48 81.32
32 0.0883 362.31 9.94 98.06 60.03 92.35
64 0.1609 397.70 18.43 98.41 62.05 95.81
128 0.3153 405.93 35.43 99.33 64.23 98.86

gpt2 4 0.0369 108.28 5.80 91.28 42.51 97.73
8 0.0732 109.23 10.48 93.05 54.08 98.84
16 0.1435 111.49 19.85 93.84 55.29 99.55
32 0.2730 117.21 38.58 94.27 43.27 99.77

inception v3 4 0.0126 317.47 1.16 85.76 6.91 13.82
8 0.0137 583.79 1.67 87.01 12.83 29.11
16 0.0159 1004.73 3.07 90.82 19.85 47.39
32 0.0271 1178.99 4.93 92.80 31.46 76.37
64 0.0448 1427.86 8.61 92.77 37.40 88.81
128 0.0813 1574.14 15.94 93.75 40.40 93.94

mobilenet v2 4 0.0057 698.08 0.56 95.79 8.10 12.13
8 0.0061 1322.24 1.03 89.73 14.62 22.44
16 0.0066 2409.23 2.11 91.19 29.92 44.89
32 0.0112 2855.66 4.25 92.62 61.22 88.65
64 0.0211 3032.44 8.50 93.41 66.87 95.12
128 0.0411 3117.90 17.00 93.80 69.11 97.73

resnet50 4 0.0068 589.78 1.16 87.39 17.55 36.26
8 0.0096 829.08 1.77 90.83 34.36 70.49
16 0.0160 998.99 2.70 92.63 45.14 87.33
32 0.0300 1067.13 4.52 93.58 46.57 93.90
64 0.0573 1117.12 8.16 93.95 48.55 98.04
128 0.1113 1149.98 15.45 100.00 49.85 99.16

resnext50 32x4d 4 0.0098 408.34 1.04 87.43 17.86 36.12
8 0.0148 540.23 1.61 90.80 35.33 68.28
16 0.0234 684.65 2.54 92.81 43.66 82.91
32 0.0420 762.39 4.36 93.54 44.80 91.70
64 0.0780 820.18 8.00 98.80 48.18 96.52
128 0.1505 850.23 15.29 100.00 49.45 98.43

t5 4 0.0311 128.74 3.17 97.18 43.39 77.25
8 0.0580 137.83 4.88 97.49 50.87 94.80
16 0.1096 146.02 8.15 97.74 53.50 97.78
32 0.2131 150.19 16.08 97.79 56.72 98.84
64 0.4211 151.97 29.17 97.89 58.93 99.41

vgg19 4 0.0098 408.51 4.19 92.15 33.91 95.18
8 0.0182 438.65 5.40 93.07 34.86 98.88
16 0.0262 610.11 10.58 93.56 48.88 99.27
32 0.0516 620.69 18.50 93.77 53.35 99.57
64 0.1021 627.01 34.32 93.88 55.28 99.69
128 0.1994 641.97 65.91 100.00 47.67 99.76

xlnet 4 0.1088 36.77 5.22 95.76 44.47 70.97

Continued on next page

109

Appendix A. Appendix

Table A.1: Usher Profiling Results on a V100

Model Batch Latency Throughput Mem Ach wavg Ach wavg SM
Size (s) (req/s) Cap(%) Occ(%) Occ(%) Util(%)

8 0.2713 29.48 7.37 97.62 52.08 69.93
16 0.6138 26.07 12.57 97.60 53.50 68.54
32 1.2668 25.26 22.09 94.45 49.51 67.87
64 2.5868 24.74 41.12 94.54 48.02 68.02

A.2 Additional Evaluation Plots

A.2.1 Limiting Number of GPUs with Vision Models with-
out setting MPS shares at a target submission rate of
500 req/s

We have conducted the same experiment as described in Section 6.2.1, but
do not set any MPS shares for Usher and WAO-Usher.

Figure A.1: Achieved Goodput in req/s for 5 vision models alexnet,
densenet121, efficientnet b7, resnet50, vgg19 on a cluster of up to
6 NVIDIA V100 GPUs. Each model receives 4000 requests at target sub-
mission rate of 500 req/s. The SLO for each model is 200ms. No MPS share
is set at the Workers for Usher and WAO-Usher.

110

Appendix A. Appendix

A.2.2 Limiting the Number of GPUs with Vision Models
and a Target Submission Rate of 1000 req/s

We have conducted the same experiment as described in Section 6.2.1, but
instead have increased the target submission rate for each model to 1000
requests per second. The SLO is maintained at 200ms.

Figure A.2: Achieved Goodput in req/s for 5 vision models alexnet,
densenet121, efficientnet b7, resnet50, vgg19 on a cluster of up to
8 NVIDIA V100 GPUs. Each model receives 8000 requests at a target sub-
mission rate of 1000 req/s. The SLO for each model is 200ms. MPS shares
are set for Workers of Usher, WAO-Usher and iGniter.

A.2.3 Analysis of SLO and Target Load Variations for a Het-
erogeneous Model Mix

This section presents additional results for the experiment detailed in Section
6.3, focusing on a diverse mix of vision and language models. The model
set includes alexnet, bert, gpt2, mobilenet v2, and resnet50. We have
allocated the total target load in a 2:1 ratio between vision and language
models. Specifically, vision models receive twice the load of language models.
The remaining experimental parameters and setup remain consistent with
those described in the main text.

111

Appendix A. Appendix

(a) SLO 150ms

(b) SLO 250ms

(c) SLO 350ms

Figure A.3: Goodput versus Target Submission Rate in a cluster of four
NVIDIA V100 GPUs for a mix of vision and language models.

112

Bibliography

[1] Anthropic - claude 3 family. https://www.anthropic.com/news/

claude-3-family.

[2] Bert for sequence classification. https://huggingface.

co/docs/transformers/model_doc/bert#transformers.

BertForSequenceClassification.

[3] Bloom 560 for sequence classification. https://huggingface.

co/docs/transformers/model_doc/bloom#transformers.

BloomForSequenceClassification.

[4] Cuda compatibility matrix. https://docs.nvidia.com/

deeplearning/cudnn/latest/reference/support-matrix.html#

support-matrix.

[5] Cuda forward compatibility package. https:

//docs.nvidia.com/deploy/cuda-compatibility/

#installing-the-forward-compatibility-package.

[6] Cuda programming model. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#programming-model.

[7] Deepspeed: Extreme speed and scale for dl training and inference.
https://github.com/microsoft/DeepSpeed.

[8] Exponential distribution. https://en.wikipedia.org/wiki/

Exponential_distribution.

[9] Github copilot. https://github.com/features/copilot.

[10] Google cloud platform n1 machine series. https://cloud.

google.com/compute/docs/general-purpose-machines?hl=de#

n1_machines.

[11] Google cloud platform: Virtual private cloud. https://cloud.google.
com/vpc?hl=de.

113

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bloom#transformers.BloomForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bloom#transformers.BloomForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bloom#transformers.BloomForSequenceClassification
https://docs.nvidia.com/deeplearning/cudnn/latest/reference/support-matrix.html#support-matrix
https://docs.nvidia.com/deeplearning/cudnn/latest/reference/support-matrix.html#support-matrix
https://docs.nvidia.com/deeplearning/cudnn/latest/reference/support-matrix.html#support-matrix
https://docs.nvidia.com/deploy/cuda-compatibility/#installing-the-forward-compatibility-package
https://docs.nvidia.com/deploy/cuda-compatibility/#installing-the-forward-compatibility-package
https://docs.nvidia.com/deploy/cuda-compatibility/#installing-the-forward-compatibility-package
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model
https://github.com/microsoft/DeepSpeed
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://github.com/features/copilot
https://cloud.google.com/compute/docs/general-purpose-machines?hl=de#n1_machines
https://cloud.google.com/compute/docs/general-purpose-machines?hl=de#n1_machines
https://cloud.google.com/compute/docs/general-purpose-machines?hl=de#n1_machines
https://cloud.google.com/vpc?hl=de
https://cloud.google.com/vpc?hl=de

Bibliography

[12] Google deepmind - gemini. https://deepmind.google/

technologies/gemini/.

[13] Google protocol buffers. https://protobuf.dev/overview/.

[14] Google tensor processing units. https://cloud.google.com/tpu?hl=
de.

[15] Gpt2 for sequence classification. https://huggingface.

co/docs/transformers/model_doc/gpt2#transformers.

GPT2ForSequenceClassification.

[16] Huggingface transformers. https://huggingface.co/docs/

transformers/de/index.

[17] Igniter, an interference-aware gpu resource provisioning framework for
achieving predictable performance of dnn inference in the cloud. github
repo. https://github.com/icloud-ecnu/igniter.

[18] iperf3: A tcp, udp, and sctp network bandwidth measurement tool.
https://github.com/esnet/iperf.

[19] Mapping metric from nvidia visual profiler to nvidia nsight compute.
https://docs.nvidia.com/nsight-compute/NsightComputeCli/

index.html#metric-comparison.

[20] Networkx, minimum weighted maximum cardinality matching.
https://networkx.org/documentation/stable/reference/

algorithms/generated/networkx.algorithms.matching.min_

weight_matching.html.

[21] Nvidia achieved occupancy. https://docs.nvidia.com/

gameworks/content/developertools/desktop/analysis/report/

cudaexperiments/kernellevel/achievedoccupancy.htm.

[22] Nvidia cuda streams. https://developer.download.nvidia.com/

CUDA/training/StreamsAndConcurrencyWebinar.pdf.

[23] Nvidia multi-instance gpu. https://docs.nvidia.com/datacenter/

tesla/mig-user-guide/.

[24] Nvidia multi-process service. https://docs.nvidia.com/deploy/

mps/.

[25] Nvidia nsight compute not supported with mps. https:

//docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#

known-issues.

114

https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://protobuf.dev/overview/
https://cloud.google.com/tpu?hl=de
https://cloud.google.com/tpu?hl=de
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2ForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2ForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2ForSequenceClassification
https://huggingface.co/docs/transformers/de/index
https://huggingface.co/docs/transformers/de/index
https://github.com/icloud-ecnu/igniter
https://github.com/esnet/iperf
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#metric-comparison
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#metric-comparison
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.min_weight_matching.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.min_weight_matching.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.matching.min_weight_matching.html
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/mps/
https://docs.nvidia.com/deploy/mps/
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues

Bibliography

[26] Nvidia nsight compute profiler. https://developer.nvidia.com/

nsight-systems.

[27] Nvidia nsight graphics profiler. https://developer.nvidia.com/

nsight-graphics.

[28] Nvidia nsight systems profiler. https://developer.nvidia.com/

nsight-systems.

[29] Nvidia system managment interface command line profiler. https:

//developer.nvidia.com/system-management-interface.

[30] Nvidia technical specifications. https://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html#

features-and-technical-specifications.

[31] Nvidia triton inference server. https://developer.nvidia.com/

triton-inference-server.

[32] Nvidia visual profiler. https://docs.nvidia.com/cuda/

profiler-users-guide/index.html.

[33] Onnx, an open format built to represent machine learning models.
https://onnx.ai.

[34] Openai, gpt-4. https://openai.com/index/gpt-4/.

[35] Openai, gpt-4o. https://openai.com/index/

gpt-4o-and-more-tools-to-chatgpt-free/.

[36] Pulp, a linear and mixed integer programming modeler written in
python. https://coin-or.github.io/pulp/.

[37] Python coroutines. https://docs.python.org/3/library/

asyncio-task.html.

[38] Python grpc. https://grpc.github.io/grpc/python/.

[39] Python grpc asyncio api. https://grpc.github.io/grpc/python/

grpc_asyncio.html.

[40] Python managers. https://docs.python.org/3/library/

multiprocessing.html#managers.

[41] Pytorch alexnet. https://pytorch.org/vision/stable/models/

alexnet.html.

[42] Pytorch cuda max memory reserved. https://pytorch.org/

docs/stable/generated/torch.cuda.max_memory_reserved.html#

torch.cuda.max_memory_reserved.

115

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/system-management-interface
https://developer.nvidia.com/system-management-interface
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://onnx.ai
https://openai.com/index/gpt-4/
https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/
https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/
https://coin-or.github.io/pulp/
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://grpc.github.io/grpc/python/
https://grpc.github.io/grpc/python/grpc_asyncio.html
https://grpc.github.io/grpc/python/grpc_asyncio.html
https://docs.python.org/3/library/multiprocessing.html#managers
https://docs.python.org/3/library/multiprocessing.html#managers
https://pytorch.org/vision/stable/models/alexnet.html
https://pytorch.org/vision/stable/models/alexnet.html
https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_reserved.html#torch.cuda.max_memory_reserved
https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_reserved.html#torch.cuda.max_memory_reserved
https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_reserved.html#torch.cuda.max_memory_reserved

Bibliography

[43] Pytorch densenet121. https://pytorch.org/vision/stable/

models/generated/torchvision.models.densenet121.html#

torchvision.models.densenet121.

[44] Pytorch efficientnet b7. https://pytorch.org/vision/stable/

models/generated/torchvision.models.efficientnet_b7.html#

torchvision.models.efficientnet_b7.

[45] Pytorch inception v3. https://pytorch.org/vision/stable/

models/generated/torchvision.models.inception_v3.html#

torchvision.models.inception_v3.

[46] Pytorch mobilenet v2. https://pytorch.org/vision/stable/

models/generated/torchvision.models.mobilenet_v2.html#

torchvision.models.mobilenet_v2.

[47] Pytorch pined memory. https://pytorch.org/tutorials/

intermediate/pinmem_nonblock.html.

[48] Pytorch resnet50. https://pytorch.org/vision/stable/models/

generated/torchvision.models.resnet50.html#torchvision.

models.resnet50.

[49] Pytorch vgg19. https://pytorch.org/vision/stable/models/

generated/torchvision.models.vgg19.html#torchvision.

models.vgg19.

[50] Pytorch vision models. https://pytorch.org/vision/stable/

models.html.

[51] Rayserve: Scalable and programmable serving. https://docs.ray.

io/en/latest/serve/index.html.

[52] T5 for sequence classification. https://huggingface.

co/docs/transformers/model_doc/t5#transformers.

T5ForSequenceClassification.

[53] Tensorrt, an ecosystem of apis for high-performance deep learning in-
ference. https://developer.nvidia.com/tensorrt.

[54] Tensort command-line wrapper. https://github.com/NVIDIA/

TensorRT/tree/main/samples/trtexec.

[55] Triton model configuration - dynamic batcher. https://docs.nvidia.
com/deeplearning/triton-inference-server/user-guide/docs/

user_guide/model_configuration.html#dynamic-batcher.

[56] Usher github repository. https://github.com/ss7krd/Usher.

116

https://pytorch.org/vision/stable/models/generated/torchvision.models.densenet121.html#torchvision.models.densenet121
https://pytorch.org/vision/stable/models/generated/torchvision.models.densenet121.html#torchvision.models.densenet121
https://pytorch.org/vision/stable/models/generated/torchvision.models.densenet121.html#torchvision.models.densenet121
https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b7.html#torchvision.models.efficientnet_b7
https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b7.html#torchvision.models.efficientnet_b7
https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b7.html#torchvision.models.efficientnet_b7
https://pytorch.org/vision/stable/models/generated/torchvision.models.inception_v3.html#torchvision.models.inception_v3
https://pytorch.org/vision/stable/models/generated/torchvision.models.inception_v3.html#torchvision.models.inception_v3
https://pytorch.org/vision/stable/models/generated/torchvision.models.inception_v3.html#torchvision.models.inception_v3
https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.mobilenet_v2
https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.mobilenet_v2
https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.mobilenet_v2
https://pytorch.org/tutorials/intermediate/pinmem_nonblock.html
https://pytorch.org/tutorials/intermediate/pinmem_nonblock.html
https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.resnet50
https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.resnet50
https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.resnet50
https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg19.html#torchvision.models.vgg19
https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg19.html#torchvision.models.vgg19
https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg19.html#torchvision.models.vgg19
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://docs.ray.io/en/latest/serve/index.html
https://docs.ray.io/en/latest/serve/index.html
https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5ForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5ForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5ForSequenceClassification
https://developer.nvidia.com/tensorrt
https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_configuration.html#dynamic-batcher
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_configuration.html#dynamic-batcher
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/model_configuration.html#dynamic-batcher
https://github.com/ss7krd/Usher

Bibliography

[57] Xlnet for sequence classification. https://huggingface.

co/docs/transformers/model_doc/xlnet#transformers.

XLNetForSequenceClassification.

[58] Saurabh Agarwal, Amar Phanishayee, and Shivaram Venkataraman.
Blox: A modular toolkit for deep learning schedulers. In Proceedings
of the Nineteenth European Conference on Computer Systems, pages
1093–1109, 2024.

[59] Yehia Arafa, Abdel-Hameed Badawy, Gopinath Chennupati, Nandak-
ishore Santhi, and Stephan Eidenbenz. Low overhead instruction la-
tency characterization for nvidia gpgpus, 05 2019.

[60] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. Serving heterogeneous machine learning mod-
els on {Multi-GPU} servers with {Spatio-Temporal} sharing. In 2022
USENIX Annual Technical Conference (USENIX ATC 22), pages 199–
216, 2022.

[61] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. Clipper: A {Low-Latency} online
prediction serving system. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 613–627, 2017.

[62] Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang, Jingwen Leng,
Li Li, and Mingyi Guo. Ebird: Elastic batch for improving respon-
siveness and throughput of deep learning services. In 2019 IEEE 37th
International Conference on Computer Design (ICCD), pages 497–505.
IEEE, 2019.

[63] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng,
Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li, et al. Enable
simultaneous dnn services based on deterministic operator overlap and
precise latency prediction. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Anal-
ysis, pages 1–15, 2021.

[64] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. Gslice:
controlled spatial sharing of gpus for a scalable inference platform. In
Proceedings of the 11th ACM Symposium on Cloud Computing, pages
492–506, 2020.

[65] Strati Foteini, Ma Xianzhe, and Klimovic Ana. Orion: Interference-
aware, fine-grained gpu sharing for ml applications. Association for
Computing Machinery, 2024.

117

https://huggingface.co/docs/transformers/model_doc/xlnet#transformers.XLNetForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/xlnet#transformers.XLNetForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/xlnet#transformers.XLNetForSequenceClassification

Bibliography

[66] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. Serving {DNNs} like clock-
work: Performance predictability from the bottom up. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 443–462, 2020.

[67] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis,
Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. Applied ma-
chine learning at facebook: A datacenter infrastructure perspective. In
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 620–629, 2018.

[68] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan So-
hail Durrani, Alexey Tumanov, Joseph Gonzalez, and Ion Stoica.
Dynamic space-time scheduling for gpu inference. arXiv preprint
arXiv:1901.00041, 2018.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. Commun. ACM,
60(6):84–90, May 2017.

[70] Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari.
Clover: Toward sustainable ai with carbon-aware machine learning in-
ference service. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–
15, 2023.

[71] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,
et al. {AlpaServe}: Statistical multiplexing with model parallelism
for deep learning serving. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 663–679, 2023.

[72] Daniel Mendoza, Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. Interference-aware scheduling for inference serving.
In Proceedings of the 1st Workshop on Machine Learning and Systems,
pages 80–88, 2021.

[73] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H.
Anderson, F. Donelson Smith, Alex Berg, and Shige Wang. An evalu-
ation of the nvidia tx1 for supporting real-time computer-vision work-
loads. In 2017 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 353–364, 2017.

118

Bibliography

[74] Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün. An
analysis of collocation on gpus for deep learning training. In Proceedings
of the 4th Workshop on Machine Learning and Systems, pages 81–90,
2024.

[75] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. {INFaaS}: Automated model-less inference serving. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 397–
411, 2021.

[76] Sudipta Saha Shubha, Haiying Shen, and Anand Iyer. USHER: Holis-
tic interference avoidance for resource optimized ML inference. In 18th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 24), pages 947–964, Santa Clara, CA, July 2024. USENIX
Association.

[77] C Tan, Z Li, J Zhang, Y Cao, S Qi, Z Liu, Y Zhu, and C Guo. Serv-
ing dnn models with multi-instance gpus: A case of the reconfigurable
machine scheduling problem (2021). arXiv preprint arxiv:2109.11067.

[78] A Vaswani. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

[79] Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao
Sun, Jian He, and Liping Zhang. Morphling: Fast, near-optimal auto-
configuration for cloud-native model serving. In Proceedings of the ACM
Symposium on Cloud Computing, pages 639–653, 2021.

[80] Xiaorui Wu, Hong Xu, and Yi Wang. Irina: Accelerating dnn inference
with efficient online scheduling. In Proceedings of the 4th Asia-Pacific
Workshop on Networking, pages 36–43, 2020.

[81] Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou, and
Fangming Liu. igniter: Interference-aware gpu resource provisioning for
predictable dnn inference in the cloud. IEEE Transactions on Parallel
and Distributed Systems, 34(3):812–827, 2022.

[82] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica.
{SHEPHERD}: Serving {DNNs} in the wild. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 23),
pages 787–808, 2023.

119

	Introduction
	Background
	Machine Learning Training vs. Inference
	Graphics Processing Units (GPUs)
	NVIDIA Programming Model
	NVIDIA GPU architecture

	GPU Sharing Techniques
	Temporal Sharing
	Spatial Sharing

	Existing Inference Systems
	RayServe
	NVIDIA Triton Inference Server

	Related Work
	Overview of ML Inference Schedulers
	Clipper: A Low-Latency Online Prediction Serving System
	Dynamic Space-Time Scheduling for GPU Inference
	Ebird: Elastic batch for improving responsiveness and throughput of deep learning services
	Serving DNNs like Clockwork: Performance Predictability from the Bottom Up
	GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform
	Irina: Accelerating DNN Inference with efficient Online Scheduling
	Abacus: Enable Simultaneous DNN Services Based on Deterministic Operator Overlap and Precise Latency Prediction
	INFaaS: Automated Model-less Inference Serving
	Interference-Aware Scheduling for Inference Serving
	Serving DNN Models with Multi-Instance GPUs: A case of the Reconfigurable Machine Scheduling Problem
	Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving
	GPUlet: Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with Spatio-Temporal Sharing
	AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learning Serving
	Clover: Toward Sustainable AI with Carbon-Aware Machine Learning Inference
	iGniter: Interference-Aware GPU Resource Provisioning for Predictable DNN Inference in the Cloud
	Sheperd: Serving DNNs in the Wild
	USHER: Holistic Interference Avoidance for Resource Optimized ML Inference

	Architecture
	Overview
	Class Definitions
	Cluster Level
	Cluster Controller Process
	Model Placement Policy
	Router
	Result Server
	Cluster Store
	Clients
	Benchmark

	Node Level
	Node Controller

	Worker Level
	Overview
	Dispatcher
	Result Processor

	Networking
	The choice of gRPC
	Simulating the Network Transmission Latency

	Current limitations
	Models are expected to fit on a single GPU
	Lack of Support for Dynamic Placement Policy
	Move clients to a separate machine
	gRPC bottlenecks the overall throughput of the cluster

	Placement Policies
	iGniter
	Overview of iGniter
	Analytical Model to predict the inference latency
	A heuristic placement algorithm to minimize cost
	Profiling
	Integration of iGniter into our system

	Usher
	Overview of Usher
	Implementation of Usher

	Usher extended with different metrics
	Weighted Average Achieved Occupancy
	Weighted SM Utilization

	Usher extended with Mixed Integer Linear Programming
	Problematic Placement Order within and Across Groups
	Problematic Replication Factor Multiplier
	An Mixed Integer Linear Programming (MILP) Approach

	Evaluation
	Evaluation Environment
	Machine Setup
	Models and Input Data used for Evaluation
	Placement Policies used for Evaluations
	Goodput as Evaluation Metric
	Clients

	Limiting the number of GPUs
	Limiting Number of GPUs with Vision Models
	Limiting the Number of GPUs for Vision and Language Models

	Changing the RPS and SLO

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Usher Profiling Results on a V100
	Additional Evaluation Plots
	Limiting Number of GPUs with Vision Models without setting MPS shares at a target submission rate of 500 req/s
	Limiting the Number of GPUs with Vision Models and a Target Submission Rate of 1000 req/s
	Analysis of SLO and Target Load Variations for a Heterogeneous Model Mix

	Bibliography

