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Abstract
GPUs are vastly underutilized, evenwhen running resource-intensive
AI applications, as GPU kernels within each job have diverse re-
source pro!les that may saturate some parts of a device while often
leaving other parts idle. Colocating applications is known to im-
prove GPU utilization, but is not common practice as it becomes
di"cult to provide predictable performance due to workload inter-
ference. Providing predictable performance guarantees requires a
deep understanding of how applications contend for shared GPU
resources such as block schedulers, compute units, L1/L2 caches,
and memory bandwidth. We study the key types of GPU resource
interference and develop a methodology to quantify a workload’s
sensitivity to each type. We discuss how this methodology can
serve as the foundation for GPU schedulers that enforce strict per-
formance guarantees and how application developers can design
GPU kernels with colocation in mind to improve e"ciency.
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1 Introduction
Graphics Processing Units (GPUs) are widely used in AI training
and inference to maximize performance per Watt. The power needs
of AI workloads now comprise a signi!cant percentage of dat-
acenter power [40, 42, 44] and contribute signi!cant cost, since
GPU hardware is power hungry and expensive. To minimize to-
tal cost of ownership and make optimal use of the limited power
budget, cloud providers need to operate GPU clusters at high utiliza-
tion. Yet many recent studies show that GPUs are vastly underuti-
lized [8, 10, 11, 17, 45, 48, 51, 60]. Even when serving multi-billion-
parameter LLMs with large batch sizes, some GPU components
may remain idle as resource requirements vary across compute vs.
memory intensive phases of a job [14, 62]. For example, Microsoft
reports less than 10% compute utilization during thememory-bound
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decoding phase of the Llama3-8B model on A100 GPUs [14]. GPUs
can also be underutilized due to small batch sizes, communication,
data preprocessing bottlenecks, and checkpointing [8, 9, 57].

GPU schedulers aim to improve utilization by colocating work-
loads. Temporal-sharing schedulers [10, 49–51, 55] execute one
workload at a time to avoid resource interference, but fail to ad-
dress single-workload GPU underutilization, and can cause severe
queuing delays [45]. In contrast, spatial sharing systems [11, 15,
43, 45, 52, 56] allow concurrent workload execution, and propose
strategies to minimize interference. However, existing spatial shar-
ing systems do not provide reliable performance guarantees. Most
systems rely on limited metrics to evaluate GPU resource utilization
and de!ne colocation strategies. As we show in §3, state-of-the-art
systems such as Orion [45] and Usher [43] oversimplify GPU uti-
lization and interference modeling, resulting in colocation decisions
that can signi!cantly degrade application performance. This pre-
vents users from applying such colocation mechanisms in practice.

Analogous to how CPU schedulers make informed scheduling
decisions by understanding how workloads interfere on CPU re-
sources [6, 7], designing e"cient GPU schedulers that spatially
share resources while providing performance guarantees requires a
deep understanding of GPU utilization and interference. In this pa-
per, we characterize how GPU workloads (e.g., LLM decode) utilize
and contend for resources within a GPU and discuss the implica-
tions for designing GPU kernels and scheduling systems. We study
key sources of interference that arise from sharing the multifaceted
components of GPUs, including streaming multiprocessors, warp
schedulers, computation cores, high-bandwidth memory, caches,
and shared memory. While some of these interference sources
(memory bandwidth, caches) are well-known from CPUs, they re-
main largely understudied in modern GPUs. We propose techniques
to assess the sensitivity of GPU kernels andworkloads to contention
for each type of resource, using a combination of GPU pro!ling
tools and a customizable suite of GPU microbenchmarks. Our mi-
crobenchmarks are available at https://github.com/eth-easl/gpu-
util-interference and our LLM pro!ling scripts are available at
https://github.com/eth-easl/vllm_pro!le.

We draw several key takeaways from our analysis. First, sched-
uling decisions should be made at !ne (per-kernel) granularity, to
avoid head-of-line blocking at the GPU block scheduler. Second, al-
locating kernels to separate Streaming Multiprocessors (SMs) helps
eliminate some sources of interference, but contention for shared
resources like L2 cache and memory bandwidth can still cause sig-
ni!cant slowdowns. Third, sharing SMs between kernels can be
bene!cial, though it is subject to multiple sources of interference,
such as shared memory bandwidth, warp scheduling, and compute
pipelines’ contention. Finally, we observe that trading o# per-kernel
marginal performance improvements for higher colocation oppor-
tunities can signi!cantly bene!t GPU e"ciency and cost. Using
these insights, we describe ways for designing GPU schedulers
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that e#ectively colocate applications to reduce cost while providing
strict performance guarantees. We also discuss implications for
GPU application programmers, such as how to design GPU kernels
to be more suitable for colocation to improve e"ciency.

2 Background
We describe the internal architecture of GPUs, introducing termi-
nology and utilization metrics that we will refer to later.

2.1 GPU Hardware Overview
GPU architecture: Figure 1 depicts a modern GPU.1 GPUs consist
of multiple clusters of Streaming Multiprocessors (SMs). Each SM
consists of subpartitions (SMSP) that contain a warp scheduler
(which can schedule 32 threads/cycle), an L0 instruction cache, a
register !le, and various compute units for di#erent data types (e.g.,
int32, fp32) and di#erent operations, referred to as pipelines (e.g.,
tensor cores) [38]. The mapping of pipelines to compute units is
hidden from users, though there have been attempts to reverse
engineer it [20, 24, 25, 32]. The GPU contains a main memory
shared by all SMs, accessed through a two-level on-chip cache
hierarchy. The L2 cache is shared across all SMs, while each SMhas a
private memory space combining L1 cache and shared memory. The
allocation between L1 cache and shared memory can be manually
con!gured by the user [23].

Threads, Blocks, and Warps. GPU programs consist of CUDA
kernels, executed by one or more GPU threads [22]. From a soft-
ware perspective, GPU threads are grouped into blocks, which are
arranged in a grid. Each thread has access to a set of registers and
shared memory for its whole lifetime. Threads in a block commu-
nicate through shared memory and synchronize using barriers or
other atomic operations. At the hardware level, the GPU executes
threads in groups called warps, typically consisting of 32 threads.
Each kernel is associated with a CUDA stream, which de!nes se-
quential execution of operations. If enough resources are available,
kernels launched from multiple streams can execute concurrently.

GPU Scheduling: NVIDIA GPUs schedule kernels at multiple
levels. First, the thread block scheduler maps thread blocks to SMs.
A block remains on an SM until all its threads complete execution.
Scheduling is constrained by SM resource limits (max number of
blocks, threads, registers, and shared memory) that depend on the
GPU architecture. A block is scheduled on an SM only if that SM
has enough resources left to accommodate all threads of that block.
Once a block is scheduled on an SM, its warps are assigned to one
of the subpartitions and are considered active. Each clock cycle, the
warp scheduler in each subpartition chooses one eligible warp and
schedules one or more instructions from that warp.

2.2 GPU Utilization Metrics
Most GPU schedulers rely on GPU utilization metrics to make colo-
cation decisions. There are many di#erent GPU utilization metrics
due to the multi-faceted nature of GPU resources. We outline popu-
lar metrics used in prior works below and metrics that will be used
throughout our analysis. Most metrics can be reported by NVIDIA
tools such as Nsight Compute (NCU) [26].
1We focus on NVIDIA GPUs and terminology. AMD GPUs follow similar architec-
ture [1], and provide tools such as Omniperf to get insights about kernels’ execution [2].
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Figure 1: Simpli!ed diagram of an NVIDIA GPU (based on
an H100), focusing on a Streaming Multiprocessor (SM).

GPU utilization from nvidia-smi/NVML [29, 30] depicts the
percentage of time at least one kernel is active on a GPU, without
revealing how well the kernels utilize the various GPU resources.
This metric is used by various works [3, 12, 49, 53, 54].

SM utilization refers to the number of SMs needed by a ker-
nel, taking into account the kernel’s grid size, block size, register-
s/thread, shared memory/thread, and the respective SM resource
limits of a GPU. Orion [45] and REEF [11] use this metric.

Arithmetic intensity refers to the ratio of $oating-point op-
erations to total data movement, and can be found using NCU’s
roo$ine model [31]. Orion [45] uses this metric to classify kernels
as compute-bound or memory-bound.

Achieved occupancy measures how many active warps exist
per SM per clock cycle on average [33, 35] and is obtained by NCU,
using the sm__warps_active.avg.pct_of_peak_sustained
_active metric. It is used by Usher [43] to estimate the compute
requirement of a kernel.

Pipe utilizationmeasured by theNCUmetric sm__inst_executed
_pipe_*.avg.pct_of_peak_sustained_active (* indicates the
pipeline, e.g. fma, tensor) expresses how e#ectively a pipeline
is used (when executing at least one warp) relative to its peak
performance.

Issued instructions per cycle (IPC):TheNCUmetric sm__inst
_issued.avg.per_cycle_active (also called IPC [34]) represents
the average number of warp instructions issued per cycle per SM.
Our GPUs have 4 subpartitions per SM, each capable of issuing one
warp instruction per cycle, i.e., the maximum IPC per SM is 4.

L2 cache throughput and hit rate The metrics
lts__throughput.avg.pct_of_peak_sustained_elapsed and
lts__t_sector_hit_rate.pctmeasure the average L2 cache through-
put and hit rate.

Shared Memory instruction bandwidth: The NCU metric
l1tex__data_pipe_lsu_wavefronts_mem_shared.sum.pct_of

_peak_sustained_elapsed measures the performance of shared
memory load/store wavefronts2 processed through the L1 data
pipe. It provides insights into how e#ectively the available shared
memory bandwidth is used.

Memory bandwidth utilization: The NCU metric gpu__dram
_throughput.avg.pct_of_peak_sustained_elapsedmeasures the
utilization of the memory bandwidth.

2Awavefront is the maximum unit that can pass through a pipeline stage per cycle [38].
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3 Pitfalls of GPU schedulers
Many existing GPU schedulers aim to improve utilization by colo-
cating workloads, with temporal and/or spatial sharing. We focus
on spatial sharing schedulers as they allow concurrent workload
execution and hence require strategies to minimize interference.

We !nd that state-of-the-art GPU schedulers consider only a sub-
set of GPU utilization metrics, resulting in unreliable performance
guarantees. We present common pitfalls below:

Pitfall 1: Relying on a single utilization metric.Most sched-
ulers rely on a single metric to assess GPU utilization and make
colocation decisions. For example, Usher [43] relies on achieved
occupancy to assess a kernel’s compute requirements, and colocates
two kernels if the sum of achieved occupancy values is < 100%. 3
Achieved occupancy can be misleading, as a kernel can saturate
GPU resources even with low achieved occupancy. To demonstrate
this, we launch two instances of a compute kernel on an H100. The
kernel performs several iterations of independent element-wise
fp32 multiplications and we launch both instances with 132 blocks
and 128 threads/block per kernel. The launch con!guration is cho-
sen to have one thread block running per SM and one warp per
SMSP. NCU reports an achieved occupancy of 6.25% per kernel,
suggesting that colocation should not result in performance degra-
dation. We show two counter-examples. First, we follow Usher’s
suggestion of constraining each kernel to a percentage of SMs equal
to its achieved occupancy. Thus, we limit each kernel to 6.25% of the
GPU SMs, setting the CUDA_MPS_ACTIVE_THREAD_PERCENTAGE [19]
variable. We observe a 8.57⌐ increase in each kernel’s latency in-
dicating that the number of SMs needed is not aligned with the
achieved occupancy. Second, we run both kernels concurrently
with the same launch con!guration in separate CUDA streams and
let them use all available SMs. We observe a 1.73⌐ increase in each
kernel’s latency, despite their low achieved occupancy. These ex-
amples indicate that predicting interference and required compute
resources based only on the number of active warps is not su"cient.

Other schedulers also consider only a single metric, such as SM
utilization or the utilization metric reported by nvidia-smi, which
leads to suboptimal decisions [3, 11, 12, 49, 53, 54].

Pitfall 2: Ignoring critical metrics. Although GPU schedulers
may consider more metrics, they often overlook essential ones.
For example, Orion [45] colocates kernels with complementary
resource pro!les (i.e., compute vs. memory bound kernels), which
it determines based on arithmetic intensity. However, it does not
consider the IPC metric. While arithmetic intensity correlates with
IPC, Orion overlooks cases where a compute kernel’s IPC is too
high and will interfere with any other colocated kernel.

To demonstrate this, we reuse the compute kernel from the pre-
vious example and a copy kernel, which repeatedly copies a 4GB
input to output array. We tune the number of iterations so the
two kernels have similar execution times. On an H100 GPU, we
launch both kernels with 132 blocks and 1024 threads/block, such
that we have one thread block of each kernel running on each SM
and use all available threads per SM. Using NCU, we con!rm that
compute is compute-bound and copy is memory-bound, thus Orion

3We focus on how Usher makes colocation decisions, not its extra components, such
as operator graph merging.

would colocate them, expecting low interference. However, we ob-
serve that the execution time of copy doubles under colocation.
NCU shows that the compute kernel already saturates the available
IPC per SM issuing 3.99 inst/cycle/SM on average. The colocated
copy kernel with an IPC of 0.57 will therefore experience warp
scheduling interference. §4.4.2 elaborates on IPC interference.

The pitfalls observed in related work raise the question: how to
accurately measure GPU utilization and estimate interference?

4 GPU interference analysis
We highlight the main GPU resources where interference can occur
for popular AI workloads (e.g., LLM decode) and how to identify
whether a kernel is susceptible to a speci!c kind of interference.

4.1 Evaluation Setup
We develop custom CUDA benchmarks, each stressing a speci!c
GPU resource. We assess the sensitivity of various workloads to
resource interference by colocating them with these benchmarks.
For intra-sm colocation (§4.4) we use CUDA streams [18], while
for inter-SM colocation (§4.3), we additionally use CUDA Green
Contexts [36] to partition SMs into mutually exclusive sets, each as-
signed to a separate stream.4 Each benchmark maintains a constant
level of interference throughout the lifetime of the colocated applica-
tion. Most experiments focus on large language model (LLM) infer-
ence and the Time Between Tokens (TBT) during the decode phase.
Increased TBT directly impacts user experience in applications
such as chatbots. We use the Gemma3-1B-IT [47] and Llama3.1-8B-
Instruct [16] models, both running on a modi!ed fork of vLLM (May
2025) adapted to support kernel colocation. We evaluate workloads
on a NVIDIA H100 NVL (132 SMs, CUDA 12.9, driver 575.57.08)
and RTX3090 GPUs (82 SMs, CUDA 12.6, driver 560.35.03).

4.2 Block Scheduler Interference
As described in §2, the block scheduler assigns blocks to SMs as long
as resource constraints are met. When resources are insu"cient,
blocks are serialized, increasing latency. We demonstrate this on
an H100 GPU by colocating the decode phase of the Llama3.1-8B-
Instruct model [16] with a lightweight sleep kernel that repeatedly
invokes nanosleep. At each of the 10 decode steps, we launch
the sleep kernel in a separate stream with an approximate sleep
duration of 10 ms, using 132 thread blocks, to ensure one thread
block per SM5 and 128 threads per block (1 warp per SMSP).

In isolation, the P90 TBT of Llama3-8B (batch size 1, prompt
length 1000) is 7.53 ms, increasing to 16.56 ms when colocated
with the sleep kernel. Figure 2 shows the Nsight Systems CUDA
trace [27] for the !rst decode iteration in both cases. Although both
workloads launch simultaneously, their overlap is minimal, limited
to a few short kernels at the start. From the fourth kernel onward,
decode execution is delayed until the sleep kernel completes due
to SM resource contention. The sleep kernel uses 16 registers per
thread (2048 per block), leaving 65536 − 2048 = 63288 registers

4Contrary to common belief, NVIDIA Multi-Process Service (MPS) does not enforce
mutual exclusion of SMs between MPS clients when setting limits. It only restricts the
maximum number of SMs available to a client [37].
5We con!rmed that each SM hosts one block of the sleep kernel by having each block
print its SM ID [39].
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Figure 2: Decode of Llama3-8B in isolation vs colocated with
a sleep kernel on H100 (batch size 1, prompt size 1000)

per SM available on the H100. The !fth decode kernel, however,
requires 64512 registers per block, exceeding the remaining regis-
ters and preventing concurrent execution. Consequently, the block
scheduler stalls decode execution until the sleep kernel !nishes,
signi!canlty increasing TBT and underutilizing the GPU. Several
subsequent kernels encounter the same issue. We observe similar
behavior on the H100 for Gemma3-1B [47], though colocation with
this model is feasible on the RTX3090 (§4.4.2).

Takeaway: Simply scheduling two kernels on the same GPU
does not ensure colocation, as they compete for SM resources such
as shared memory, registers, and threads. To prevent head-of-line
blocking, where one kernel hinders others, schedulers should make
decisions at !ne granularity, e.g., per set of kernels [62], per ker-
nel [11, 45] or per set of thread blocks [5]. The above example also
shows that if developers write kernels that use as many GPU re-
sources as possible (common today), they leave the scheduler with
little opportunities to colocate and optimize e"ciency.

4.3 Inter-SM Interference: Global Memory and
L2 cache

While workloads can be con!gured to run on separate SMs, global
memory and L2 cache remain shared resources. As we illustrate
below, interference can arise in two forms: (1) L2 cache pollution,
which degrades locality, (2) L2 and memory bandwidth contention.

L2 Cache Pollution A kernel is susceptible to L2 pollution if
it repeatedly accesses data from L2 and it exhibits a high L2 hit
rate. To study this, we colocate two instances of the copy kernel,
in separate CUDA green contexts on the H100 (with a 50MB L2).
We split the SMs across both contexts: one kernel uses 64 thread
blocks (1024 threads/block) on 64 SMs; the other uses 68 thread
blocks (1024 threads/block) on 68 SMs. To minimize L1 e#ects, we
con!gure the kernels to maximize for shared memory. We gradually
increase the data size per instance and measure the slowdown of
one kernel when colocated versus running in isolation.

Figure 3 shows the results along with the isolated L2 hit rate. For
input sizes ≤ 8MB, there is no slowdown, as both instances’ input
and output arrays !t into L2. At 16MB, slowdown peaks at 2.15⌐ due
to the combined 64MB working set exceeding L2 capacity. Beyond
26MB, slowdown plateaus around 1.12⌐, as L2 locality in isolation
is lost (more data needs to be loaded from main memory). Further
L2 pollution by a colocated kernel creates no additional slowdown.
The L2 hit rate stabilizes near 50%, as every store is counted as a
hit by NCU, making half of accesses appear as hits [21].

L2 Cache/Memory Bandwidth Interference Kernels with
high memory demand often lack L2 locality, making them less
prone to pollution but more sensitive to bandwidth contention. To

Figure 3: L2 cache interference due to cache pollution be-
tween two copy kernels on an H100.

Thread Blocks of interference kernel 0 34 68 102 136

L2 Band Util (copy kernel) [%] 37 68 87 95
Mem Band Util (copy kernel) [%] 27 51 69 81
P90 TBT (ms) 16.9 17.6 18.38 19.92 22

Table 1: E"ect of memory bandwidth interference on the
Time Between Tokens for the LLAMA-3.1-8B on H100 GPU,
batch size 8, 16384 tokens per prompt. When the LLM runs
on the whole GPU (no green contexts), P90 TBT is 14.2 ms

demonstrate this, we colocate the decode phase of Llama3.1-8B with
a copy kernel that transfers a 4GB input using vectorized loads.
Each workload runs in its own CUDA green context, with 64 SMs
allocated to Llama and 68 SMs to the copy kernel. Table 1 reports the
P90 TBT when generating 10 tokens for the LLM running alone vs.
when colocated with the copy kernel, along with the copy kernel’s
L2 and Memory bandwidth throughput utilization. As the number
of copy thread blocks increases, bandwidth pressure rises, causing
up to 1.3⌐ slowdown. Since L2 access is mandatory, higher memory
bandwidth also translates to higher L2 throughput. We observe
similar trends across other prompt and batch sizes. We observe that
all LLM decode kernels do not bene!t much from L2 cache locality
and have to load most of their data from main memory. This makes
them susceptible to L2 and memory bandwidth interference; in
the examples of Table 1, most LLM decode kernels experienced
signi!cant slowdown.

Takeaway: Even when workloads run on disjoint SMs, using
strict SM isolation mechanisms such as green contexts, they can
still contend for L2 capacity and L2 and global memory bandwidth.

4.4 Intra-SM Interference
When workloads run on the same SM, they can interfere in the
warp scheduler, the computation pipelines or shared memory.

4.4.1 Shared Memory. As mentioned in §2.1, each SM has a private
memory space partitioned between the L1 cache and shared mem-
ory. To achieve high performance, kernels with high arithmetic
intensity load chunks of data from global memory into shared mem-
ory for computation before writing results back to global memory.
Modern NVIDIA GPUs (≥ CC 5.x) have 32 memory banks, each
with a bandwidth of 32 bits/cycle. Successive 32-bit words map to
successive banks. An n-way bank con!ict occurs when 𝐿 > 1 threads
within the same warp access di#erent data in the same bank. An
𝐿-way bank con$ict is resolved by serializing the requests over 𝐿
con$ict-free requests, thereby decreasing throughput.
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Figure 4: Shared Memory interference. E"ect of increasing
shared memory bank con#icts on two cuBLAS GEMM imple-
mentations for dimensions 1024 and 2048 on an H100.

Kernels running concurrently on the same SM can contend for
shared memory bandwidth. We demonstrate this by colocating the
PyTorch torch.mm operator [41] with a custom 𝐿-strided copy ker-
nel that repeatedly loads and stores elements of a 4KB array within
shared memory. Varying the access stride a#ects the shared mem-
ory bank con$icts within a warp. Figure 4 shows the slowdown
under colocation vs. running in isolation of the torch.mm operator
on the H100 as we increase the number of bank con$icts within our
copy kernel. Depending on the input matrix dimensions, torch.mm,
uses di#erent implementations of cuBLAS GEMM. For a 32-way
bank con$ict, the slowdown is 1.79⌐ for dims 2048 and 3.75⌐ for
dims 1024. The cuBLAS implementation for dimension 1024 has a
higher utilization of the shared memory pipeline, which explains
its higher sensitivity to interference. The slowdown for both imple-
mentations increases signi!cantly beyond 4 bank con$icts. Since
the shared memory pipeline is already saturated by the copy kernel,
further increases in bank con$icts lead to further serialization of
shared memory requests, thereby increasing the torch.mm latency.

Takeaway: A kernel with non-optimal shared memory access
may result in many bank con$icts, saturating the SM’s shared mem-
ory pipeline and starving memory accesses of colocated kernels.

4.4.2 IPC interference. To demonstrate how the architectural limit
of 4 instr/cycle/SM can become a bottleneck, we colocate thememory-
bound decode phase of the Gemma3-1B model [47] with four ver-
sions of our compute kernel (𝑀1 to 𝑀4), each increasing the Instruc-
tion Level Parallelism (ILP) to put growing pressure on the warp
scheduler. To enable concurrent intra-SM execution and avoid se-
quential kernel launches due to shared memory constraints, we
con!gure the L1 cache/shared memory split to maximize shared
memory [23]. We conducted the experiments on the RTX3090 GPU,
as certain Gemma kernels on the H100 saturate the thread capacity
per SM, preventing intra-SM colocation (§4.2). In each scenario (𝑀0
to 𝑀4), we generate 10 new tokens and report the 90th percentile
of TBT. For scenarios 𝑀1 to 𝑀4, we launch the modi!ed compute

kernel with 82 thread blocks (one per SM) and 128 threads per block
(one warp per SMSP). Scenario 𝑀0 represents the baseline, with the
Gemma model running in isolation and without setting any custom
L1 cache/shared memory con!guration.

Table 2 shows that the TBT remains largely una#ected in scenar-
ios 𝑀0 to 𝑀3, but experiences signi!cant degradation as the compute
kernel’s IPC approaches the hardware limit in 𝑀4. Comparing 𝑀0 and

Figure 5: Kernel latencies for scenarios 𝑀0,𝑀2,𝑀4 running a
Gemma3-1B decode iteration with a single hidden layer on
the RTX3090 (batch size 8, prompt size 1000). Dashed lines
represent left-over IPC when compute kernel is running.

𝐿0 𝐿1 𝐿2 𝐿3 𝐿4

IPC compute [instr/cycle/SM] 0 1.18 2.06 2.9 3.45

Prompt Size 1000, Batch Size 1 5.59 5.75 6.00 6.24 10.74
Prompt Size 1000, Batch Size 8 6.08 6.23 6.56 6.94 12.52

Table 2: P90 Time Between Tokens (TBT) latency in ms when
generating 10 tokens with the Gemma3-1B [47] model on the
RTX3090. The model is run in isolation (𝑀0) and colocated
with a compute bound kernel that emits an increasing num-
ber of instructions per cycle (𝑀1 − 𝑀4).
𝑀1 shows that manually setting the shared memory con!guration to
maximize for shared memory has no noticeable impact on the TBT
of the Gemma model. Nevertheless, this potential impact should be
kept in mind whenever manually setting the con!guration. Figure 5
highlights IPC interference for a prompt of 1000 tokens and batch
size 8, illustrating the latency slowdown experienced by each kernel
for the Gemma3-1B model con!gured with a single hidden layer
(in contrast to 26 in the full model). In 𝑀2, only kernels 𝑁26 to 𝑁34
experience high slowdown due to high IPCs. However, in 𝑀4, all
kernels slow down as the combined IPC approaches or exceeds the
architectural limit of 4 instr/cycle/SM. This highlights that intra-
SM colocation under limited interference is feasible, but must be
managed carefully to prevent performance degradation.

Takeaway:While blocks from di#erent kernels can bene!t from
colocation on the same SM, a kernel that has a very high IPC can
cause signi!cant slowdown to other kernels, due to warp scheduling
interference. In that case, scheduling to separate SMs (e.g., using
green contexts) might be a better approach.

4.4.3 Pipeline Interference. We modify our compute kernel to uti-
lize fp64 multiplication __dmul_rn [28]. We examine scenarios 𝑀1
to 𝑀4 increasing ILP from one to four. We colocate two kernels, each
with 132 thread blocks and 128 threads per block, to have one thread
block per SM and one warp per kernel on each SMSP. Table 3 shows
that when the aggregated FP64 pipeline utilization (computed by
summing up the per-kernel utilizations from Table 3) remains below
100% (𝑀1 and 𝑀2), colocation o#ers a signi!cant speedup (> 1.87⌐).
However, the speedup decreases signi!cantly as utilization exceeds
100% (𝑀3 and 𝑀4), despite IPC not being a bottleneck. Even though
saturating a computation pipeline is frequently associated with
a high IPC, compute interference can still occur before the warp
scheduler saturates. In the H100 architecture, the peak performance
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𝐿1 𝐿2 𝐿3 𝐿4

IPC compute [instr/cycle/SM] 0.64 1.10 1.53 1.96
FP64 Pipe Utilization [%] 24.22 47.71 69.42 90.68
Speedup [seq/col] 1.93 1.87 1.33 1.03

Table 3: Speedup of colocating two FP64 compute kernels over
running them sequentially on H100. IPC and FP64 Pipe Util
correspond to pro!ling the compute kernel in isolation.

for arithmetic FP64 operations is only half that of FP32 operations,
thus we demonstrate interference for FP64 operations.

This example also illustrates why the achieved occupancy alone
is insu"cient for colocation decisions, as already seen in §3. Despite
having an achieved occupancy of 6.25% in all four scenarios, the ker-
nel saturates an entire computation pipeline due to a high number
of independent arithmetic instructions. While this scenario is less
likely to occur in practice (since most GPU workloads do not use
FP64), this demonstrates another potential source of interference.

Takeaway: SM’s pipelines can saturate even before the warp
scheduler saturates, which might require scheduling to di#erent
SMs to avoid pipeline interference.

5 Research Outlook and Conclusions
Wediscuss how insights from §4 can guide the design of an interference-
aware GPU scheduler (§5.1), how GPU vendors can enable more
$exible and e"cient colocation (§5.2), and discuss how GPU pro-
grammers can develop GPU kernels with colocation in mind (§5.3).

5.1 Interference-aware GPU Scheduling
Our analysis in §4 helps us identify key requirements that a GPU
scheduler should satisfy to enable e"cient GPU workload coloca-
tion with strict performance guarantees. First, scheduling decisions
should be made at a "ne granularity, per set of kernels [62], per
kernel [45], or per thread blocks [5], to avoid head-of-line blocking
caused by long-running, resource-demanding kernels preventing
colocation, as shown in §4.2.

Second, a scheduler should be able to predict and quantify in-
terference between colocated kernels and workloads. As a !rst
step, we propose developing a kernel-level interference estimator
to predict the performance of kernels under colocation. For each
workload, the estimator can collect each kernel’s metrics and re-
source sensitivity as outlined in §4. The estimator can then predict
each kernel’s slowdown due to interference at each resource. Exist-
ing interference estimators only consider a subset of interference
sources [52, 59]. Themis [58] and GPUPool [46] consider many of
the resources outlined in §4, but treat them as a black-box input
to an ML model, and present their analysis and evaluation only
in simulation. Instead, we demonstrated interference caused by
contention for these resources on high-end NVIDIA GPUs. The
kernel-level estimator provides a foundation for implementing a
workload-level interference estimator that can predict a job’s inter-
ference sensitivity. Using that estimator, a GPU scheduler can !nd
workload pairs suitable for colocation.

Third, a GPU scheduler should balance per-workload perfor-
mance and GPU e"ciency. For example, restricting a workload
or a set of kernels to a subset of SMs can increase GPU e"ciency
with acceptable performance degradation (in §4.3, we saw that re-
stricting the LLM decode to less than half of the GPU’s SMs has

only a 1.19⌐ TBT slowdown). Adjusting SM L1/shared memory
con!gurations can also improve colocation, as we saw in §4.4.2.

Finally, GPU schedulers should account for di#erences in GPU
generations. Libraries such as cuDNN and cuBLAS have di#erent
implementations for di#erent GPU architectures, meaning that
the same workload might have di#erent behavior on two di#erent
GPUs, as shown for the LLM decode phase in §4. Thus, a scheduler
should repro!le a GPU workload when running on a di#erent GPU.
Although pro!ling with tools such as NCU can span minutes to
hours, this is acceptable since models are trained or deployed for
large periods of time.

5.2 Hardware Support for Spatial GPU Sharing
The closed-source nature of NVIDIA GPUs limits user control over
kernel execution as various hardware mechanisms are a black box.
Exposing some hardware features can help programmers take better
control of the GPU. Better intra-SM visibility is needed, providing
insights into the warp scheduling algorithm and the mapping of in-
structions to physical cores. Enhancing pro!ling tools such as NCU
to allow for collecting GPU metrics under kernel colocation would
be very bene!cial for better understanding interference, although
very challenging since these pro!lers heavily rely on deterministic
kernel replay. Furthermore, programmer-friendly ways to partition
SMs and DRAM channels at the kernel level can mitigate intra-SM
and DRAM bandwidth interference. CUDA green contexts already
provide much stricter isolation compared to MPS, but they only
partition SMs and not DRAM channels. Related work proposes
limiting a kernel’s blocks to speci!c DRAM channels, but they are
code-intrusive and unsuitable for ML workloads with closed-source
kernels [4, 13, 56, 61]. Finally, enabling kernel preemptibility could
improve kernel colocation, especially in real-time tasks, as shown
by REEF [11] for AMD GPUs.

5.3 GPU Kernel Design Tradeo"s
Most existing high-performance GPU workloads are not designed
with colocation in mind. Kernels often will try to maximize their
intra-SM resource usage (registers, amount of shared memory), and
launch large grid sizes, preventing the thread block scheduler from
running anything else in the GPU at the same time (see §4.2). How-
ever, as related work has shown, even high-performance kernels
leave parts of the GPU severely underutilized [14, 45]. This presents
a tradeo# between maximizing individual kernel performance and
enabling e"cient colocation [62]. Marginal performance gains may
come at the cost of GPU utilization and overall e"ciency. Thus,
if the goal is to increase GPU e"ciency with workload coloca-
tion, GPU programmers can aid the GPU schedulers by providing
colocation-friendly kernel variants.

We hope our characterization of GPU interference inspires and
informs future work on GPU scheduling and custom kernel design,
and we encourage similar studies across other vendors (e.g. AMD).
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