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The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry
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The GPU Underutilization Paradox
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We should first operate existing clusters more 
efficiently!



Reasons for GPU underutilization

● Small batch sizes in inference due to SLOs [1] 

● Input data preprocessing and ingestion stalls [2]

● Communication bottlenecks in distributed training [3]

● Differences in resource requirements (e.g. compute/memory) in the same 
workload [4,5]

[1] Gujarati et al, Serving DNNs like Clockwork: Performance Predictability from the Bottom Up, OSDI'20
[2] Murray et al, tf.data: A Machine Learning Data Processing Framework, VLDB'21
[3] Peng et al, A generic communication scheduler for distributed DNN training acceleration, SOSP'19
[4] Strati et al, Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications, EuroSys'24
[5] Kamath et al, POD-Attention: Unlocking Full Prefill-Decode Overlap for Faster LLM Inference, ASPLOS'25 10

https://www.usenix.org/system/files/osdi20-gujarati.pdf
https://dl.acm.org/doi/pdf/10.14778/3476311.3476374
https://dl.acm.org/doi/10.1145/3341301.3359642
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf


Sharing GPUs across workloads as promising solution
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Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

Fill idle times with other workloads

Workloads may still not fully saturate 
GPU
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Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

Fill idle times with other workloads

Workloads may still not fully saturate 
GPU

Spatial Sharing

Overlap kernels on the GPU (CUDA streams, 
MPS or MIG on NVIDIA)

Better utilization

Colocation can lead to interference and 
unpredictable slowdowns dangerous for 
latency critical applications
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Our main problem today…

We lack a deep understanding of interference from spatial
colocation.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#streams
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
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Why do existing approaches fall short?

Single or coarse metrics cannot capture the entire interference landscape.
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https://www.usenix.org/system/files/osdi24-shubha.pdf
https://dl.acm.org/doi/10.1145/3627703.3629578
https://www.usenix.org/conference/osdi22/presentation/han
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://ieeexplore.ieee.org/ielaam/71/10012125/10002315-aam.pdf&ved=2ahUKEwiMy923j_-QAxU-WkEAHaxbDT0QFnoECBkQAQ&usg=AOvVaw0LFkb_GBV9lDsglPoCLbvu
https://www.usenix.org/system/files/atc22-choi-seungbeom.pdf


To reason correctly about interference, we need…

1. A complete view of all shared resources.
2. A methodology to measure sensitivity to each resource.
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Sources of GPU interference
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Sources of GPU interference
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Methodology: Stressing One Resource at a Time

● We open-source a suite of CUDA benchmarks that each isolate and stress a single 
GPU resource  [1,2].

● We present a methodology for measuring workload sensitivity by colocating 
workloads with these benchmarks.

22[1] https://github.com/eth-easl/gpu-util-interference/tree/main
[2] https://github.com/eth-easl/vllm_profile/tree/main

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
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Intra-SM Interference
Interference within the Streaming Multiprocessor
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Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle
=> max 4 instr/cycle/SM
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Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle
=> max 4 instr/cycle/SM
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Warp Scheduler Interference
Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.
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Warp Scheduler Interference
Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.
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Colocation within an 
SM can be successful 

when handled with 
care



Why not just separate kernels to different 
SMs?
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Inter-SM Interference
Interference across Streaming Multiprocessors
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Memory/L2 Cache Bandwidth Interference

● Available memory/l2 cache bandwidth is shared
across SMs
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Memory/L2 Cache Bandwidth Interference

● Available memory/l2 cache bandwidth is shared
across SMs

● SMs divided up into disjoint sets using CUDA Green 
Contexts [1] to avoid any source of interference 
within SM
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Memory/L2 Cache Bandwidth Interference

● Available memory/l2 cache bandwidth is shared
across SMs

● SMs divided up into disjoint sets using CUDA Green 
Contexts [1] to avoid any source of interference 
within SM
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Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense 
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).
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Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense 
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).
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Despite running on disjoint 
SMs, resources like L2 

cache and memory 
bandwidth remain shared



Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional. Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.
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Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional. Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.

2. Where should we go from here?
a. Build an interference predictor.

b. Extend the benchmark suite to other GPU vendors.

c. Kernel designers should start developing kernels with colocation in mind.
=> “Do we really need to use 10% more resources for 2% in additional performance?”

d. Hardware manufacturers to become more open-source about internal functionality.
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For further questions

Paul Elvinger
elvingerpa@gmail.com

Foteini Strati
foteini.strati@inf.ethz.ch

Github Repo

mailto:elvingerpa@gmail.com
mailto:foteini.strati@inf.ethz.ch
mailto:foteini.strati@inf.ethz.ch


Backup Slides
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Warp Scheduler Interference - Kernel Level Impact

Kernel-level latency for Llama3.1-8B with 1 hidden layer (batch size 8, prompt size 1000) 
while colocated with an IPC intense microbenchmark.
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Shared Memory Interference
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Shared Memory Interference
● Shared Memory is accessed over 32 banks*.
● Bank conflict: different addresses mapping to the same 

bank => accesses are serialized
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Shared Memory Interference
● Shared Memory is accessed over 32 banks*.
● Bank conflict: different addresses mapping to the same 

bank => accesses are serialized
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Shared Memory Interference
● Shared Memory is accessed over 32 banks*.
● Bank conflict: different addresses mapping to the same 

bank => accesses are serialized
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Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100
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Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100
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Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100
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Shared Memory Interference

A kernel with non-
optimal shared 

memory access pattern 
may starve memory 

accesses of colocated 
kernels

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100
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