Understanding GPU Resource
Interference One Level Deeper

Paul Elvinger?, Foteini Strati?, Natalie Enright Jerger?, Ana Klimovic?
IETH Zurich, 2University of Toronto

% ER & isnto

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

TECHSPOT

TEEMDRG REVIEWS FEATURES DOWHLOADS THE BEST TECH D& PRODUCT FINDER FORUSS

[rascrmuse | 2 f o
Nvidia Blackwell GPUs sold out for the next
12 months as Al market boom continues

Analysts expect Team Green to increase its already formidable market share

By Skye Jacobs October 12, 2024 ot TEZ7 AN

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

TECHSPOT

(asomnss [| oo
Nvidia Blackwell GPUs sold out for the next

12 months as Al market boom continues
"1 Oracle, OpenAl Sign $300 Billion
Cloud Deal

The majority of new revenue revealed by Oracle will come from Openal

deal, sources say

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

TECHSPOT

TEEMDRG REVIEWS FEATURES DOWHLOADS THE BEST TECH D& PRODUCT FINDER FORUSS

[rascrmuse | 2 f o
Nvidia Blackwell GPUs sold out for the next
12 months as Al market boom continues
"1 Oracle, OpenAl Sign $300 Billion
Cloud Deal

The majority of new revenue revealed by Oracle will come from Openal

deal, sources say

Zuckerberg says Meta will build data
center the size of Manhattan in latest Al

push

CEO says company plans to spend hundreds of billions on
developing artificial intelligence products

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization...

TECHSPOT

[rasamse | o f oo

Nvidia Blackwell GPUs sold out for the next
12 months as Al market boom continues
"1 Oracle, OpenAl Sign $300 Billion
Cloud Deal

The majority of new revenue revealed by Oracle will come from Openal

deal, sources say

Zuckerberg says Meta will build data
center the size of Manhattan in latest Al

push

CEO says company plans to spend hundreds of billions on
developing artificial intelligence products

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization...

An Empirical Study on Low GPU Utilization of Deep Learning

TECHSPOT

TEE NG REVIEWS FEATURES WHLOADS THE BEST TECH D& PRODUCT FINDER FORUMS ‘I,nbs
m m Yanjbe Gao Yichen He' Ximze Li Bo Zhao®
n Microsoft Research Microsoft Besearch Peking University Microsoft Besearch
Beeljing, Chisa Beijing. China [Beijeg. China Besung, China
Nvidia Blackwell GPUs sold out for the next anjpa@amicrossi o Y ket g oo
yichende e Lo
.
12 months as Al market boom continues Haxiang Lin' Yoo Liang Jing Zhong Hongyu Zhang
Mlicreanlt Research Microsaft Microaoft Chonpaing University
. . . Bedjing. China Beijing. China Berijing. Chima Chongqing, China
hndl'} EXCLUSIVE | BUSIRESS haoxling@micromoft com yoliang @ micromsi oom jinabongE@microsdl com hyzhangé@cquedusn
By Sy ® Jingzhou Wang Yorghua Zeng Keli Gui Jie Tong
OraclE, OPEHAI Sigll sgﬁo Bllliﬂn Tsinghua University Misrosolt Mecrosalt Mlicroanit
Bewjing. China Beijing. China Beijing. China Beeijing. China

yozergPmecrosolt com keliguig@microsofi com jietongeimicrosalt com

Clﬂ“d Deal v.'mg?kmugc;lw.ghuudu-:n

Mo Yang

The majority of new revenue revealed by Oracle will come from Openal
Microsoft Besearch
deal, sources say Beigng, China
rruof.'a.rauimn:rnmﬂ Com

Zuckerberg says Meta will build data
center the size of Manhattan in latest Al

push

CEO says company plans to spend hundreds of billions on
developing artificial intelligence products

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization...
TECHSPOT An Empirical Study on Low GPU Utilization of Deep Learning
TEE NG REVIEWS FEATURES WHLOADS THE BEST TECH D& PRODUCT FINDER FORUMS _Inbs
m n m 'l1|-:1]r.:nst'\il'l"lrll({.::r\ch 'l'ln-c'.r.i::-;:;Tw:{s:f;mh I':kﬂl'.:gnl.ixnlf:jlrulv Flﬂiﬁ':;iu;ﬂ\fh
- - Bzl jing. Chima Beijing. China Beijimg. China Bewung. China
Nvidia Blackwell GPUs sold out for the next rponaseben v T e ke bahsgmicnadt o
12 months as Al market boom continues Nt e Yoro Liang ngZoong Hongy Zhang
AI"IE.H', .EI{L“I“. BUSINESS hm:::;nrfml}\:::n;mm :.'t-luL:ﬂ::;'ﬂmmm ||n.d':;::1.:r:‘:ﬂcom h:;:inr:qv:%q:‘:‘dllﬁn
"1 Oracle, OpenAl Sign $300 Billion e M Koot
Beijing. China . Beijing. China Beeijing. China

Bewjing. China

Cloud Deal e

The majority of new revenue revealed by Oracle will come from Openal 360% SM . Memory CapaciFy

deal, sources say é 40% Device Memory Bjandw.quth |
Zuckerberg says Meta will build data N gzo%k :ﬂ"‘:: : 1':?:;;: N :;“f‘,::‘::.—:i':‘ s C‘f?ﬁ‘l'jff;:» / "?-.""\-‘lf';»ji‘fi
center the size of Manhattan in latest Al g F NN NN

0%
Dayl Day2 Day3 Day4 Day5 Dayé

pllSh Time (days)

Figure 1. GPU utilization metrics over a week in a production
Ads inference service at Meta.

CEO says company plans to spend hundreds of billions on

developing artificial intelligence products

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization...

TECHSPOT An Empirical Study on Low GPU Utilization of Deep Learning

TEE MRS REVIEWS FEATURES DOWHLOADS THE BEST TECH D& PRODUCT FINDER FORUNS ans

’ N

We should first operate existing clusters more
_ efficiently!

> y

developimg armMTTEATTIIENZETNTE ProwucTs |

Reasons for GPU underutilization

e Small batch sizes in inference due to SLOs [1]
e |nput data preprocessing and ingestion stalls [2]

e Communication bottlenecks in distributed training [3]

e Differences in resource requirements (e.g. compute/memory) in the same
workload [4,5]

[1] Gujarati et al. Serving DNNs like Clockwork: Performance Predictability from the Bottom Up, OSDI'20
[2] Murray et al. tfdata: A Machine | earning Data Processing Framework. VI DB'21

[3]1 Pen A generi mmunication sch r for distri DNN trainin
— = B e D ; .

10

https://www.usenix.org/system/files/osdi20-gujarati.pdf
https://dl.acm.org/doi/pdf/10.14778/3476311.3476374
https://dl.acm.org/doi/10.1145/3341301.3359642
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf

Sharing GPUs across workloads as promising solution

11

Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

!l task 0 task 0

O
-
-
-D,

task 1

time>
Fill idle times with other workloads

& Workloads may still not fully saturate
GPU

12

Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

!l task 0 task 0

task 1

ooog

time>
Fill idle times with other workloads

¥ Workloads may still not fully saturate
GPU

Spatial Sharing

Overlap kernels on the GPU (CUDA streams,
MPS or MIG on NVIDIA)

GPU SM

’ \

i task 0 | | task 2

task 1 task 3

time>
Better utilization

¥ Colocation can lead to interference and
unpredictable slowdowns dangerous for
latency critical applications

13

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#streams
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

Sharing GPUs across workloads as promising solution

Temporal Sharing Spatial Sharing

Time-slice the GPU. Overlap kernels on the GPU (CUDA streams,

/

"

Our main problem today..

We lack a deep understanding of interference from spatial
colocation.(®)

\

/

14

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#streams
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

Why is predicting interference so hard?

GPU SMSPo SMSP1
[Thread block scheduler] [Warp scheduler] [Warp scheduler]
CcC CcC CcC CcC CcC CcC
[Register file] [Register file]
[Loi cache] [Loi cache]
SMSP 2 SMSP 3
[Warp scheduler | [Warp scheduler]
cC cC cC CC CcC CcC
[Register file] [Register file]
L2 cache (Loi cache] [Loi cache]

L1 cache / Shared memory

Why is predicting interference so hard?

Kernel 1 Kernel 2

Thread Block
GPU u iy SMSP 0 SMSP 1
[Thread block scheduler] [Warp scheduler] [Warp scheduler]
CcC CcC CcC CcC CcC CcC
[Register file] [Register file]
[Loi cache] [Loi cache]
SMSP 2 SMSP 3
[Warp scheduler | [Warp scheduler]
CcC CcC cC CC CcC CcC
[Register file] [Register file]
Loi cache Loi cache
L2 cache [)] 1]
L1 cache / Shared memory

Why do existing approaches fall short?

Single or coarse metrics cannot capture the entire interference landscape.

Thread Block L2 Cache | Memory Warp CUDA L1 Cache /
Scheduler Bandwidth Scheduler | Cores Shared Memory
Usher [OSDI'24] b ¢) 4 X
Orion [EuroSys'24] X b4
Reef [0SDI'22] X X X X X
Gniter [TPDS 22] X X % X
GPUlet [ATC22] X X X X

Directly or indirectly covered by the system

¥ System fails to cover this source of interference

https://www.usenix.org/system/files/osdi24-shubha.pdf
https://dl.acm.org/doi/10.1145/3627703.3629578
https://www.usenix.org/conference/osdi22/presentation/han
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://ieeexplore.ieee.org/ielaam/71/10012125/10002315-aam.pdf&ved=2ahUKEwiMy923j_-QAxU-WkEAHaxbDT0QFnoECBkQAQ&usg=AOvVaw0LFkb_GBV9lDsglPoCLbvu
https://www.usenix.org/system/files/atc22-choi-seungbeom.pdf

To reason correctly about interference, we need..

1. A complete view of all shared resources.
2. A methodology to measure sensitivity to each resource.

18

Sources of GPU interference

GPU

[

Thread block scheduler]

L2 cache

CUDA CUDA
Core Core

SMSP o SMSP 1
Warp scheduler] Warp scheduler]
CUDA

CUDA
Core

Core

Register file]

Register file |

e W e ———

— /@ —

Lo Instrcache |

Lo Instr cache]

SMSP 2

SMSP 3

Warp scheduler]

Warp scheduler

CUDA CUDA
Core Core

CUDA ” CUDA
Core Core

[
|
[Register file]
[

Lo Instr cache]

(
|
(
(

)
Register file]
)

Lo Instr cache

L1 cache / Shared memory

19

Sources of GPU interference

Inter-SM Interference

- N\

Thread Block GPU \ SMSP o SMSP1

Scheduler (Thread block scheduler)
Interference /

Warp scheduler]

CUDA CUDA
Core Core

Warp scheduler]

CUDA CUDA
Core Core

Regjister file] Register file |

e —
— /@ —

Lo Instrcache | Lo Instr cache]

SMSP 2 SMSP 3

Warp scheduler]

CUDA CUDA
Core Core

[[Warp scheduler]
[Regjister file] [Regjister file]
[[)

CUDA ” CUDA
Core Core

L2 Cache L
Interference

—

Lo Instr cache

Lo Instr cache]

L2 cache
L1 cache / Shared memory
Memory
Bandwidth
Interference

N

Sources of GPU interference

Inter-SM Interference

-

Intra-SM Interference

-

~.

Thread Block
Scheduler
Interference

GPU

—\

/

L2 Cache
Interference

N

—

Memory
Bandwidth
Interference

[

Thread block scheduler

)

L2 cache

N

—

SMSP o

SMSP 1

Warp scheduler]

Warp scheduler

CUDA | | CUDA
Core

Core

CUDA CUDA
Core Core

Register file

[
|
[Register file]
[

Lo Instrcache |

— /@ —

Lo Instr cache

SMSP 2

SMSP 3

Warp scheduler]

Warp scheduler

CUDA CUDA
Core Core

CUDA ” CUDA
Core Core

\‘

\Warp
Scheduler
Interference

Register file]

]

[
[Register file
[

— — —— —

Lo Instr cache]

Lo Instr cache

)

i

CUDA Core/
Pipeline
Interference

L1 cache / Shared memory

_

]

Shared
Memory
Interference

4

Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

1] http github.com/eth-easl/gpu-util-interference/tree/main
[2] http github.com/eth-easl/vllm profile/tree/main

22

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

@@‘5%

"

-’-_,—‘

1] http github.com/eth-easl/gpu-util-interference/tree/main 23

[2] https:.//github.com/eth-easl/vllm profile/tree/main

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

0 3 E
£ o va

Interference
9

1] http github.com/eth-easl/gpu-util-interference/tree/main

[2] https:.//github.com/eth-easl/vllm profile/tree/main

24

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

L1 =13
2 o pE

Interference
9

1] http github.com/eth-easl/gpu-util-interference/tree/main 25

[2] https:.//github.com/eth-easl/vllm profile/tree/main

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Intra-SM Interference

Interference within the Streaming Multiprocessor

26

Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle

=> max 4 instr/cycle/SM

SM
SMSP o SMSP 1
\Warp scheduler] Warp scheduler]
CUDA

| CUDA

Core Core

CUDA || CUDA
Core

Core

Register file]

Register file]
)

—) ——— —

Lo Instr cache

—) —— —

Lo Instr cache |

SMSP 2 SMSP
[Warp scheduler] [\Warp scheduler
| CUDA | CUDA | CUDA | CUDA
Core Core Core Core
[Register file] [Register file]
[Lo Instr cache] [Lo Instr cache]

L1 cache / Shared memory

27

Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle

=> max 4 instr/cycle/SM

Microbenchmark to emit a
high amount of
instructions per cycle (IPC)

SM

SMSP o

SMSP 1

\Warp scheduler]

Warp scheduler l

CUDA | CUDA |
Core Core

| CUDA “ CUDA
Core Core

[Regjister file]

[Register file]

[Lo Instr cache]

[Lolnstrcache |

SMSP 2 SMSP
Warp scheduler] \Warp scheduleLr|
| CUDA | CUDA | CUDA | CUDA
Core Core Core Core
[Register file] [Register file]

[Lo Instr cache]

[Lo Instr cache]

L1 cache / Shared memory

28

Warp Scheduler Interference

Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.

TBT P90 latency [ms]

15.0

=

U N O N

o un o Ln
1 1 1 1

M
Ln
1

o
o

0 1.18 2.06 2.9 3.45
Instructions per Cycle of interference kernel

29

Warp Scheduler Interference

Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.

Colocation within an
15.0 _ SM can be successful
B Batch Size 1 when handled with

1 mmm Batch Size 8 Z care

= e

o N

o L
1

7.5 1

5.0 -

TBT P90 latency [ms]

2.5 1

0.0 -

0 1.18 2.06 2.9 3.45
Instructions per Cycle of interference kernel

30

Why not just separate kernels to different
SMs?

31

Inter-SM Interference

Interference across Streaming Multiprocessors

32

Memory/L2 Cache Bandwidth Interference

Available memory/12 cache bandwidth is shared
across SMs

GPU

[

Thread block scheduler

)

L2 cache

—

33

Memory/L2 Cache Bandwidth Interference

« Available memory/12 cache bandwidth is shared
across SMs

o SMsdivided up into disjoint sets using CUDA Green

Contexts [1] to avoid any source of interference
within SM

(11 CUDA Green Contexts

GPU

[Thread block scheduler

)

N\

Workload

A 4\

CUDA
bench

——

A

|

[1 i } i }
L2 cache

)

34

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html

Memory/L2 Cache Bandwidth Interference

« Available memory/12 cache bandwidth is shared

across SMs GPU
o SMsdivided up into disjoint sets using CUDA Green | Threw\edmer)
Contexts [1] to avoid any source of interference =
within SM
Workload t?:n?:ﬁ Ve

. g _/
Microbenchmark to copy a i) i) i}
lot of data within memory [1 L2 cache |

using vectorized operations |’/> E

(11 CUDA Green Contexts

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

36

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

7 25 100 &
£ c
< 20- -80 -3
2 N
g 15- 60 =
(¥ -
510' '40 4-|:_!
o
& 5. 120 S
-
m =)
@ ~ 0 . : . . . 0 &
! 0 34 68 102 136 @

Number Thread Blocks of interference kernel

37

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

El Mem BW Uil I L2 Cache BW Uil

100

s]
[e ™ B
[2 I s T O 1 B s TR ¥ |

TBT P90 latency [m

o

Bandwidth Utilization [%]

©) 0 34 68 102 136
Number Thread Blocks of interference kernel

38

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

—8— TBT P90 lat Bl Mem BW Uil B L2 Cache BW Uil

— 25 100 &
E 22 g
. 201 17.6 -80 2
2201 g e s
S 15 1 60 =
o 3
S 10' '40 4-:_!
()]
& 5. 120 S
—
m -
@ * o o 3
| 0 34 68 102 136 3

Number Thread Blocks of interference kernel

39

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense

microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

—8— TBT P90 lat Bl Mem BW Uil B L2 Cache BW Uil

7 25
£ %
i 17.6
> 1
215—
S 10+
g 5
o
® F o
| 0 34 68 102 136

Number Thread Blocks of interference kernel

co
o

Bandwidth Utilization

N O
o o

o

]

Despite running on disjoint
SMs, resources like L2
cache and memory
bandwidth remain shared

;%.\

40

Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.

41

Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.

2. Where should we go from here?
a. Build an interference predictor.

b. Extend the benchmark suite to other GPU vendors.

c. Kernel designers should start developing kernels with colocation in mind.
=> ‘Do we really need to use 10% more resources for 2% in additional performance?”

d. Hardware manufacturers to become more open-source about internal functionality.

42

Sources of GPU interference

Inter-SM Interference Intra-SM Interference

CUDA Benchmark suite and Methodology to isolate
and stress on GPU resource at a time

- ,- = “’;;., m

°
W
£

B

Colocation can be beneficial when interference is
accurately modeled along all dimensions

mm Batch Size 1
12.51 mmm pgatch Size 8

L
o

TBT P20 latency [ms]
=l
L

2.5

0.0
Lt 1.18 2.06 2.9 3.45

Instructions per Cycle of interference kernel

For further questions

Paul Elvinger
elvingerpa@gmail.com

Foteini Strati
foteini.strati@inf.ethz.ch

Github Repo

43

mailto:elvingerpa@gmail.com
mailto:foteini.strati@inf.ethz.ch
mailto:foteini.strati@inf.ethz.ch

Backup Slides

Warp Scheduler Interference - Kernel Level Impact

Kernel-level latency for Llama3.1-8B with 1 hidden layer (batch size 8, prompt size 1000)
while colocated with an IPC intense microbenchmark.

log-scalel sS4 (ILP 4) e SO (isolation) === Remaining IPC S2
BN S2 (ILP 2) —e— Kernel IPC~ ==e-- Remaining IPC S4

E‘ =~

E .32

> o

g >

L 15

- £

OCJ —

Kernel

Shared Memory Interference

SMSP o SMSP 1
Warp scheduler] Warp scheduler]
CUDA | CUDA CUDA | CUDA
Core Core Core Core

Register file]

Register file]

— —/ —

Lolnstrcache |

— — ———

LoInstrcache |

SMSP 2 SMSP 3
Warp scheduler] Warp scheduler]
CUDA | CUDA CUDA | CUDA
Core Core Core Core

Regjister file]

[
|
[Register file]
[

Lo Instr cache]

(
|
i
i

Lo Instr cache]

L1 cache / Shared memory

46

Shared Memory Interference

e Shared Memory is accessed over 32 banks”.
e Bank conflict: different addresses mapping to the same
bank => accesses are serialized

" Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide

Lo Instr cache

Lo Instr cache

SMSP o SMSP 1
[Warp scheduler] [Warp scheduler]
| CUDA ” CUDA | | CUDA ” CUDA |
Core Core Core Core
[Register file] [Register file]
(J| |l)

Lo Instr cache

SMSP 2 SMSP 3
[Warp scheduler] [Warp scheduler]
| CUDA ” CUDA | | CUDA ” CUDA |
Core Core Core Core
[Register file] [Regjister file]
(J| |]

Lo Instr cache

L1 cache / Shared memory

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-5-x

Shared Memory Interference

e Shared Memory is accessed over 32 banks”.
e Bank conflict: different addresses mapping to the same
bank => accesses are serialized

conflict free 2-way conflict

" Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide

Lo Instr cache

Lo Instr cache

SMSP o SMSP 1
[Warp scheduler] [Warp scheduler]
| CUDA ” CUDA | | CUDA ” CUDA |
Core Core Core Core
[Register file] [Register file]
(|)

SMSP 2

SMSP 3

\Warp scheduler

Warp scheduler

CUDA CUDA
Core Core

CUDA CUDA
Core Core

Register file

[
[Register file
[

Lo Instr cache

)
|
)
)

(
|
i
i

Lo Instr cache

)
|
)
)

L1 cache / Shared memory

48

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-5-x

Shared Memory Interference

e Shared Memory is accessed over 32 banks”.
e Bank conflict: different addresses mapping to the same

Lo Instr cache

bank => accesses are serialized SMSP o SMSP 1
conflict free 2-way conflict [Warp scheduler] [Warp scheduler]
| CUDA ” CUDA | | CUDA ” CUDA |
Core Core Core Core
[Register file] [Register file]
[J| |l)

Lo Instr cache

Lo Instr cache

SMSP 2 SMSP 3
[Warp scheduler] [Warp scheduler]
| CUDA ” CUDA | | CUDA ” CUDA |
Core Core Core Core
[Register file] [Regjister file]
(J| |]

Lo Instr cache

Microbenchmark to create
high number of bank
conflicts

" Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide

L1 cache / Shared memory
__

49

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-5-x

Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

50

Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

Slowdown to isolation

- 100

- 75

r50

- 25

2 4 8 16
Number of bank conflicts per instruction

32

—

Shared Mem Util [%

51

Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

Slowdown to isolation

= Slowdown (GEMM 1024) -=—- Shared Mem Util (GEMM 1024)
B Slowdown (GEMM 2048) 0 eeeew Shared Mem Util (GEMM 2048)
—8— Shared Mem Util (Copy Kernel)

- 100

. =m A
12 4 8 16 32

Number of bank conflicts per instruction

—

Shared Mem Util [%

52

Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100 .
A kernel with non-

optimal shared
memory access pattern
may starve memory
accesses of colocated

/] kernels

= Slowdown (GEMM 1024) -=—- Shared Mem Util (GEMM 1024)
= Slowdown (GEMM 2048) e Shared Mem Util (GEMM 204
—8— Shared Mem Util (Copy Kernel)

S 41 = -100
© =
S -75 B
L -
o p-mm g - £
e OO of DT TUURRVIUUTUUTRTY (SR 50 O
_§ 21 L 25 ks
o 3 /. Y [
v]l — e - - | 0 u
v 1 2 4 8 16 32

Number of bank conflicts per instruction

53

	Slide 1: Understanding GPU Resource Interference One Level Deeper
	Slide 2: The GPU Underutilization Paradox
	Slide 3: The GPU Underutilization Paradox
	Slide 4: The GPU Underutilization Paradox
	Slide 5: The GPU Underutilization Paradox
	Slide 6: The GPU Underutilization Paradox
	Slide 7: The GPU Underutilization Paradox
	Slide 8: The GPU Underutilization Paradox
	Slide 9: The GPU Underutilization Paradox
	Slide 10: Reasons for GPU underutilization
	Slide 11: Sharing GPUs across workloads as promising solution
	Slide 12: Sharing GPUs across workloads as promising solution
	Slide 13: Sharing GPUs across workloads as promising solution
	Slide 14: Sharing GPUs across workloads as promising solution
	Slide 15: Why is predicting interference so hard?
	Slide 16: Why is predicting interference so hard?
	Slide 17: Why do existing approaches fall short?
	Slide 18: To reason correctly about interference, we need…
	Slide 19: Sources of GPU interference
	Slide 20: Sources of GPU interference
	Slide 21: Sources of GPU interference
	Slide 22: Methodology: Stressing One Resource at a Time
	Slide 23: Methodology: Stressing One Resource at a Time
	Slide 24: Methodology: Stressing One Resource at a Time
	Slide 25: Methodology: Stressing One Resource at a Time
	Slide 26: Intra-SM Interference Interference within the Streaming Multiprocessor
	Slide 27: Warp Scheduler Interference
	Slide 28: Warp Scheduler Interference
	Slide 29: Warp Scheduler Interference
	Slide 30: Warp Scheduler Interference
	Slide 31: Why not just separate kernels to different SMs?
	Slide 32: Inter-SM Interference Interference across Streaming Multiprocessors
	Slide 33: Memory/L2 Cache Bandwidth Interference
	Slide 34: Memory/L2 Cache Bandwidth Interference
	Slide 35: Memory/L2 Cache Bandwidth Interference
	Slide 36: Memory Bandwidth Interference
	Slide 37: Memory Bandwidth Interference
	Slide 38: Memory Bandwidth Interference
	Slide 39: Memory Bandwidth Interference
	Slide 40: Memory Bandwidth Interference
	Slide 41: Key learnings and future directions
	Slide 42: Key learnings and future directions
	Slide 43
	Slide 44: Backup Slides
	Slide 45: Warp Scheduler Interference - Kernel Level Impact
	Slide 46: Shared Memory Interference
	Slide 47: Shared Memory Interference
	Slide 48: Shared Memory Interference
	Slide 49: Shared Memory Interference
	Slide 50: Shared Memory Interference
	Slide 51: Shared Memory Interference
	Slide 52: Shared Memory Interference
	Slide 53: Shared Memory Interference

