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Reasons for GPU underutilization

e Small batch sizes in inference due to SLOs [1]
e |nput data preprocessing and ingestion stalls [2]

e Communication bottlenecks in distributed training [3]

e Differences in resource requirements (e.g. compute/memory) in the same
workload [4,5]

[1] Gujarati et al. Serving DNNs like Clockwork: Performance Predictability from the Bottom Up, OSDI'20
[2] Murray et al. tfdata: A Machine | earning Data Processing Framework. VI DB'21

[3]1 Pen A generi mmunication sch r for distri DNN trainin
— = B e D ; .
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https://dl.acm.org/doi/pdf/10.14778/3476311.3476374
https://dl.acm.org/doi/10.1145/3341301.3359642
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf

Sharing GPUs across workloads as promising solution

11



Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.
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Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

!l task 0 task 0

task 1

ooog

time>
Fill idle times with other workloads

¥ Workloads may still not fully saturate
GPU

Spatial Sharing

Overlap kernels on the GPU (CUDA streams,
MPS or MIG on NVIDIA)

GPU SM

’ \

i task 0 | | task 2

task 1 task 3

______

time>
Better utilization

¥ Colocation can lead to interference and
unpredictable slowdowns dangerous for
latency critical applications
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Sharing GPUs across workloads as promising solution

Temporal Sharing Spatial Sharing

Time-slice the GPU. Overlap kernels on the GPU (CUDA streams,

/

"

Our main problem today..

We lack a deep understanding of interference from spatial
colocation.(®)

\

/
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Why is predicting interference so hard?
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L1 cache / Shared memory




Why is predicting interference so hard?

Kernel 1 Kernel 2
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Why do existing approaches fall short?

Single or coarse metrics cannot capture the entire interference landscape.

Thread Block L2 Cache | Memory Warp CUDA L1 Cache /
Scheduler Bandwidth Scheduler | Cores Shared Memory
Usher [OSDI'24] b ¢ ) 4 X
Orion [EuroSys'24] X b4
Reef [0SDI'22] X X X X X
Gniter [TPDS 22] X X % X
GPUlet [ATC22] X X X X

Directly or indirectly covered by the system

¥ System fails to cover this source of interference



https://www.usenix.org/system/files/osdi24-shubha.pdf
https://dl.acm.org/doi/10.1145/3627703.3629578
https://www.usenix.org/conference/osdi22/presentation/han
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://ieeexplore.ieee.org/ielaam/71/10012125/10002315-aam.pdf&ved=2ahUKEwiMy923j_-QAxU-WkEAHaxbDT0QFnoECBkQAQ&usg=AOvVaw0LFkb_GBV9lDsglPoCLbvu
https://www.usenix.org/system/files/atc22-choi-seungbeom.pdf

To reason correctly about interference, we need..

1. A complete view of all shared resources.
2. A methodology to measure sensitivity to each resource.
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Sources of GPU interference
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Sources of GPU interference

Inter-SM Interference
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Sources of GPU interference
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-

Intra-SM Interference

-

~.

Thread Block
Scheduler
Interference

GPU

—\

/

L2 Cache
Interference

N

—

Memory
Bandwidth
Interference

[

Thread block scheduler

)

L2 cache

N

—

SMSP o

SMSP 1

Warp scheduler ]

Warp scheduler

CUDA | | CUDA
Core

Core

CUDA CUDA
Core Core

Register file

[
|
[ Register file ]
[

Lo Instrcache |

— /@ —

Lo Instr cache

SMSP 2

SMSP 3

Warp scheduler ]

Warp scheduler

CUDA CUDA
Core Core

CUDA ” CUDA
Core Core

\‘

\Warp
Scheduler
Interference

Register file ]

]

[
[ Register file
[

— — —— —

Lo Instr cache ]

Lo Instr cache

)

i

CUDA Core/
Pipeline
Interference

L1 cache / Shared memory

\_

]

Shared
Memory
Interference

4




Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

1] http github.com/eth-easl/gpu-util-interference/tree/main
[2] http github.com/eth-easl/vllm profile/tree/main
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Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.
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1] http github.com/eth-easl/gpu-util-interference/tree/main 23

[2] https:.//github.com/eth-easl/vllm profile/tree/main
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Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

0 3 E
£ o va

Interference
9

1] http github.com/eth-easl/gpu-util-interference/tree/main

[2] https:.//github.com/eth-easl/vllm profile/tree/main
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Methodology: Stressing One Resource at a Time

e We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

e We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

L1 =13
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[2] https:.//github.com/eth-easl/vllm profile/tree/main
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Intra-SM Interference

Interference within the Streaming Multiprocessor

26



Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle

=> max 4 instr/cycle/SM
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Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle

=> max 4 instr/cycle/SM

Microbenchmark to emit a
high amount of
instructions per cycle (IPC)
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Warp Scheduler Interference

Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.

TBT P90 latency [ms]

15.0

=

U N O N

o un o Ln
1 1 1 1

M
Ln
1

o
o

0 1.18 2.06 2.9 3.45
Instructions per Cycle of interference kernel
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Warp Scheduler Interference

Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.

Colocation within an
15.0 _ SM can be successful
B Batch Size 1 when handled with

1 mmm Batch Size 8 Z care
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Instructions per Cycle of interference kernel
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Why not just separate kernels to different
SMs?
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Inter-SM Interference

Interference across Streaming Multiprocessors
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Memory/L2 Cache Bandwidth Interference

Available memory/12 cache bandwidth is shared
across SMs

GPU

[

Thread block scheduler

)

L2 cache

—
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Memory/L2 Cache Bandwidth Interference

« Available memory/12 cache bandwidth is shared
across SMs

o SMsdivided up into disjoint sets using CUDA Green

Contexts [1] to avoid any source of interference
within SM

(11 CUDA Green Contexts

GPU

[ Thread block scheduler

)

N\

Workload

A 4\

CUDA
bench

——

A

|

[1 i } i }
L2 cache

)
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https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html

Memory/L2 Cache Bandwidth Interference

« Available memory/12 cache bandwidth is shared

across SMs GPU
o SMsdivided up into disjoint sets using CUDA Green | Threw\edmer )
Contexts [1] to avoid any source of interference =
within SM
Workload t?:n?:ﬁ Ve

. g _/
Microbenchmark to copy a i) i) i}
lot of data within memory [1 L2 cache |

using vectorized operations |’/> E

(11 CUDA Green Contexts



https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).
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Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).
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Number Thread Blocks of interference kernel
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Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).
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Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).
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Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense

microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).
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Despite running on disjoint
SMs, resources like L2
cache and memory
bandwidth remain shared
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Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.
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Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.

2. Where should we go from here?
a. Build an interference predictor.

b. Extend the benchmark suite to other GPU vendors.

c. Kernel designers should start developing kernels with colocation in mind.
=> ‘Do we really need to use 10% more resources for 2% in additional performance?”

d. Hardware manufacturers to become more open-source about internal functionality.
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Sources of GPU interference

Inter-SM Interference Intra-SM Interference

CUDA Benchmark suite and Methodology to isolate
and stress on GPU resource at a time
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Colocation can be beneficial when interference is
accurately modeled along all dimensions

mm Batch Size 1
12.51 mmm pgatch Size 8

L
o

TBT P20 latency [ms]
=l
L

2.5

0.0
Lt 1.18 2.06 2.9 3.45

Instructions per Cycle of interference kernel

For further questions

Paul Elvinger
elvingerpa@gmail.com

Foteini Strati
foteini.strati@inf.ethz.ch

Github Repo
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Warp Scheduler Interference - Kernel Level Impact

Kernel-level latency for Llama3.1-8B with 1 hidden layer (batch size 8, prompt size 1000)
while colocated with an IPC intense microbenchmark.
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Shared Memory Interference
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Shared Memory Interference

e Shared Memory is accessed over 32 banks”.
e Bank conflict: different addresses mapping to the same
bank => accesses are serialized

" Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide
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Shared Memory Interference

e Shared Memory is accessed over 32 banks”.
e Bank conflict: different addresses mapping to the same
bank => accesses are serialized

conflict free 2-way conflict

" Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide
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Shared Memory Interference

e Shared Memory is accessed over 32 banks”.
e Bank conflict: different addresses mapping to the same

Lo Instr cache

bank => accesses are serialized SMSP o SMSP 1
conflict free 2-way conflict [ Warp scheduler ] [ Warp scheduler ]
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Core Core Core Core
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Microbenchmark to create
high number of bank
conflicts

" Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide

L1 cache / Shared memory
\__
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Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100
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Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

Slowdown to isolation
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Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

Slowdown to isolation
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Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100 .
A kernel with non-

optimal shared
memory access pattern
may starve memory
accesses of colocated

/] kernels
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