
Understanding GPU Resource
Interference One Level Deeper
Paul Elvinger1, Foteini Strati1, Natalie Enright Jerger2, Ana Klimovic1

1ETH Zurich, 2University of Toronto

1

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

2

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

3

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

4

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry

5

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization…

6

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization…

7

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization…

8

The GPU Underutilization Paradox

GPUs are scarce, expensive and power-hungry But cloud providers report poor utilization…

9

We should first operate existing clusters more
efficiently!

Reasons for GPU underutilization

● Small batch sizes in inference due to SLOs [1]

● Input data preprocessing and ingestion stalls [2]

● Communication bottlenecks in distributed training [3]

● Differences in resource requirements (e.g. compute/memory) in the same
workload [4,5]

[1] Gujarati et al, Serving DNNs like Clockwork: Performance Predictability from the Bottom Up, OSDI'20
[2] Murray et al, tf.data: A Machine Learning Data Processing Framework, VLDB'21
[3] Peng et al, A generic communication scheduler for distributed DNN training acceleration, SOSP'19
[4] Strati et al, Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications, EuroSys'24
[5] Kamath et al, POD-Attention: Unlocking Full Prefill-Decode Overlap for Faster LLM Inference, ASPLOS'25 10

https://www.usenix.org/system/files/osdi20-gujarati.pdf
https://dl.acm.org/doi/pdf/10.14778/3476311.3476374
https://dl.acm.org/doi/10.1145/3341301.3359642
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://anakli.inf.ethz.ch/papers/orion_eurosys24.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf
https://akkamath.github.io/files/ASPLOS25_POD.pdf

Sharing GPUs across workloads as promising solution

11

Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

Fill idle times with other workloads

Workloads may still not fully saturate
GPU

12

task 0 task 1

time

GPU SMs

task 0

Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

Fill idle times with other workloads

Workloads may still not fully saturate
GPU

Spatial Sharing

Overlap kernels on the GPU (CUDA streams,
MPS or MIG on NVIDIA)

Better utilization

Colocation can lead to interference and
unpredictable slowdowns dangerous for
latency critical applications

13

task 0 task 1

time

GPU SMs

task 0 task 0

task 1

task 2

time

GPU SMs

task 3

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#streams
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

Sharing GPUs across workloads as promising solution

Temporal Sharing

Time-slice the GPU.

Fill idle times with other workloads

Workloads may still not fully saturate
GPU

Spatial Sharing

Overlap kernels on the GPU (CUDA streams,
MPS or MIG on NVIDIA)

Better utilization

Colocation can lead to interference and
unpredictable slowdowns dangerous for
latency critical applications

14

task 0 task 1

time

GPU SMs

task 0 task 0

task 1

task 2

time

GPU SMs

task 3

Our main problem today…

We lack a deep understanding of interference from spatial
colocation.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#streams
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

Thread block scheduler

GPU

SM SM SM SM

…

L1 cache / Shared memory

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 0

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 1

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 2

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 3

Why is predicting interference so hard?

15

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

L1 cache / Shared memory

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 0

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 1

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 2

CC

L0i cache

Warp scheduler

Register file

CC CC

SMSP 3

Thread block scheduler

GPU

Why is predicting interference so hard?

SM SM SM SM

…

Kernel 2

TB TB

Kernel 1
T
B

T
B

T
B

Thread Block
warp1 warp2

warp3 warp4

16

Why do existing approaches fall short?

Single or coarse metrics cannot capture the entire interference landscape.

17

Thread Block
Scheduler

L2 Cache Memory
Bandwidth

Warp
Scheduler

CUDA
Cores

L1 Cache /
Shared Memory

Usher [OSDI’24]

Orion [EuroSys’24]

Reef [OSDI’22]

iGniter [TPDS’22]

GPUlet [ATC’22]

Directly or indirectly covered by the system
System fails to cover this source of interference

https://www.usenix.org/system/files/osdi24-shubha.pdf
https://dl.acm.org/doi/10.1145/3627703.3629578
https://www.usenix.org/conference/osdi22/presentation/han
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://ieeexplore.ieee.org/ielaam/71/10012125/10002315-aam.pdf&ved=2ahUKEwiMy923j_-QAxU-WkEAHaxbDT0QFnoECBkQAQ&usg=AOvVaw0LFkb_GBV9lDsglPoCLbvu
https://www.usenix.org/system/files/atc22-choi-seungbeom.pdf

To reason correctly about interference, we need…

1. A complete view of all shared resources.
2. A methodology to measure sensitivity to each resource.

18

Sources of GPU interference

19

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

Thread block scheduler

GPU

SM SM SM SM

…

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

Sources of GPU interference

20

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

Thread block scheduler

GPU

SM SM SM SM

…

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

Thread Block
Scheduler

Interference

L2 Cache
Interference

Memory
Bandwidth

Interference

Inter-SM Interference

Sources of GPU interference

21

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

Thread block scheduler

GPU

SM SM SM SM

…

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

Thread Block
Scheduler

Interference

L2 Cache
Interference

Memory
Bandwidth

Interference

Warp
Scheduler

Interference

CUDA Core/
Pipeline

Interference

Shared
Memory

Interference

Intra-SM InterferenceInter-SM Interference

Methodology: Stressing One Resource at a Time

● We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

● We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

22[1] https://github.com/eth-easl/gpu-util-interference/tree/main
[2] https://github.com/eth-easl/vllm_profile/tree/main

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Methodology: Stressing One Resource at a Time

● We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

● We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

23

+

[1] https://github.com/eth-easl/gpu-util-interference/tree/main
[2] https://github.com/eth-easl/vllm_profile/tree/main

➊

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Methodology: Stressing One Resource at a Time

● We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

● We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

24

+

Interference
Kernel

[1] https://github.com/eth-easl/gpu-util-interference/tree/main
[2] https://github.com/eth-easl/vllm_profile/tree/main

➊

➋

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Methodology: Stressing One Resource at a Time

● We open-source a suite of CUDA benchmarks that each isolate and stress a single
GPU resource [1,2].

● We present a methodology for measuring workload sensitivity by colocating
workloads with these benchmarks.

25

+

Interference
Kernel

[1] https://github.com/eth-easl/gpu-util-interference/tree/main
[2] https://github.com/eth-easl/vllm_profile/tree/main

➊

➋

➌

https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/gpu-util-interference/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main
https://github.com/eth-easl/vllm_profile/tree/main

Intra-SM Interference
Interference within the Streaming Multiprocessor

26

Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle
=> max 4 instr/cycle/SM

27

SM

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

Warp Scheduler Interference

Warp scheduler schedules 1 warp (32 threads) per SMSP per cycle
=> max 4 instr/cycle/SM

28

SM

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

Microbenchmark to emit a
high amount of

instructions per cycle (IPC)

Warp Scheduler Interference
Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.

29

Warp Scheduler Interference
Gemma3-1B token generation with prompt size 1000 colocated with an
IPC intense microbenchmark on a NVIDIA RTX3090 GPU.

30

Colocation within an
SM can be successful

when handled with
care

Why not just separate kernels to different
SMs?

31

Inter-SM Interference
Interference across Streaming Multiprocessors

32

Memory/L2 Cache Bandwidth Interference

● Available memory/l2 cache bandwidth is shared
across SMs

33

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

Thread block scheduler

GPU

SM SM SM SM

…

Memory/L2 Cache Bandwidth Interference

● Available memory/l2 cache bandwidth is shared
across SMs

● SMs divided up into disjoint sets using CUDA Green
Contexts [1] to avoid any source of interference
within SM

34

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

Thread block scheduler

GPU

SM SM SM SM

…

[1] CUDA Green Contexts

Workload CUDA
bench

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html

Memory/L2 Cache Bandwidth Interference

● Available memory/l2 cache bandwidth is shared
across SMs

● SMs divided up into disjoint sets using CUDA Green
Contexts [1] to avoid any source of interference
within SM

35

Main memory

L2 cache

SM

SM

SM

SM

SM

SM

SM

SM

Thread block scheduler

GPU

SM SM SM SM

…

[1] CUDA Green Contexts

Microbenchmark to copy a
lot of data within memory
using vectorized operations

Workload CUDA
bench

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

36

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

37

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

38

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

39

Memory Bandwidth Interference

Colocate LLama3.1-8B (BS 8, prompt size 16384) with memory bandwidth intense
microbenchmark on a NVIDIA H100 on disjoint SMs (64-68 split).

40

Despite running on disjoint
SMs, resources like L2

cache and memory
bandwidth remain shared

Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional. Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.

41

Key learnings and future directions

1. What have we learned?
a. GPUs are made up of multiple heterogeneous resources, each a potential source of interference.

b. GPU interference is multi-dimensional. Single metrics cannot capture the entire landscape.

c. Colocation can be beneficial when interference is properly modeled.

2. Where should we go from here?
a. Build an interference predictor.

b. Extend the benchmark suite to other GPU vendors.

c. Kernel designers should start developing kernels with colocation in mind.
=> “Do we really need to use 10% more resources for 2% in additional performance?”

d. Hardware manufacturers to become more open-source about internal functionality.

42

43

For further questions

Paul Elvinger
elvingerpa@gmail.com

Foteini Strati
foteini.strati@inf.ethz.ch

Github Repo

mailto:elvingerpa@gmail.com
mailto:foteini.strati@inf.ethz.ch
mailto:foteini.strati@inf.ethz.ch

Backup Slides

44

Warp Scheduler Interference - Kernel Level Impact

Kernel-level latency for Llama3.1-8B with 1 hidden layer (batch size 8, prompt size 1000)
while colocated with an IPC intense microbenchmark.

45

log-scale!

Shared Memory Interference

46

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

Shared Memory Interference
● Shared Memory is accessed over 32 banks*.
● Bank conflict: different addresses mapping to the same

bank => accesses are serialized

47

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

* Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-5-x

Shared Memory Interference
● Shared Memory is accessed over 32 banks*.
● Bank conflict: different addresses mapping to the same

bank => accesses are serialized

48

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

* Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide

conflict free 2-way conflict

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-5-x

Shared Memory Interference
● Shared Memory is accessed over 32 banks*.
● Bank conflict: different addresses mapping to the same

bank => accesses are serialized

49

L1 cache / Shared memory

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

SMSP 0 SMSP 1

SMSP 2 SMSP 3

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

CUDA
Core

L0 Instr cache

Warp scheduler

Register file

CUDA
Core

* Specific to the NVIDIA GPU architecture (CC >= 5.0)
Figures from CUDA Programming Guide

conflict free 2-way conflict

Microbenchmark to create
high number of bank

conflicts

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-5-x

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

50

Shared Memory Interference

51

Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

52

Shared Memory Interference

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

53

Shared Memory Interference

A kernel with non-
optimal shared

memory access pattern
may starve memory

accesses of colocated
kernels

Colocate GEMMs with a shared memory intensive microbenchmark on NVIDIA H100

	Slide 1: Understanding GPU Resource Interference One Level Deeper
	Slide 2: The GPU Underutilization Paradox
	Slide 3: The GPU Underutilization Paradox
	Slide 4: The GPU Underutilization Paradox
	Slide 5: The GPU Underutilization Paradox
	Slide 6: The GPU Underutilization Paradox
	Slide 7: The GPU Underutilization Paradox
	Slide 8: The GPU Underutilization Paradox
	Slide 9: The GPU Underutilization Paradox
	Slide 10: Reasons for GPU underutilization
	Slide 11: Sharing GPUs across workloads as promising solution
	Slide 12: Sharing GPUs across workloads as promising solution
	Slide 13: Sharing GPUs across workloads as promising solution
	Slide 14: Sharing GPUs across workloads as promising solution
	Slide 15: Why is predicting interference so hard?
	Slide 16: Why is predicting interference so hard?
	Slide 17: Why do existing approaches fall short?
	Slide 18: To reason correctly about interference, we need…
	Slide 19: Sources of GPU interference
	Slide 20: Sources of GPU interference
	Slide 21: Sources of GPU interference
	Slide 22: Methodology: Stressing One Resource at a Time
	Slide 23: Methodology: Stressing One Resource at a Time
	Slide 24: Methodology: Stressing One Resource at a Time
	Slide 25: Methodology: Stressing One Resource at a Time
	Slide 26: Intra-SM Interference Interference within the Streaming Multiprocessor
	Slide 27: Warp Scheduler Interference
	Slide 28: Warp Scheduler Interference
	Slide 29: Warp Scheduler Interference
	Slide 30: Warp Scheduler Interference
	Slide 31: Why not just separate kernels to different SMs?
	Slide 32: Inter-SM Interference Interference across Streaming Multiprocessors
	Slide 33: Memory/L2 Cache Bandwidth Interference
	Slide 34: Memory/L2 Cache Bandwidth Interference
	Slide 35: Memory/L2 Cache Bandwidth Interference
	Slide 36: Memory Bandwidth Interference
	Slide 37: Memory Bandwidth Interference
	Slide 38: Memory Bandwidth Interference
	Slide 39: Memory Bandwidth Interference
	Slide 40: Memory Bandwidth Interference
	Slide 41: Key learnings and future directions
	Slide 42: Key learnings and future directions
	Slide 43
	Slide 44: Backup Slides
	Slide 45: Warp Scheduler Interference - Kernel Level Impact
	Slide 46: Shared Memory Interference
	Slide 47: Shared Memory Interference
	Slide 48: Shared Memory Interference
	Slide 49: Shared Memory Interference
	Slide 50: Shared Memory Interference
	Slide 51: Shared Memory Interference
	Slide 52: Shared Memory Interference
	Slide 53: Shared Memory Interference

